Skip to main content
Log in

Separation of 152+154Eu, 90Sr from radioactive waste effluent using liquid–liquid extraction by polyglycerol phthalate

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A new polyglycerol phthalate extractant was prepared and characterized using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, and thermogravimetric analysis. A preliminary study of the extraction of long-lived (90Sr and 152+154Eu) and short-lived (90Y) radionuclides by polyglycerol phthalate was performed. The influence of different diluents, concentration of the acid, type of acid, and various interfering ions was explored. The stripping of 152+154Eu radionuclide was studied by using different acid solutions, and it was found that sulfuric acid was the ideal acid for this purpose. Furthermore, 152+154Eu was extracted from the fission products (90Sr) and the extraction% of 90Sr was found to improve in the presence of interfering ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.F. Stumbe, B. Brunchmann, Hyperbranched polyesters based on adipic acid and glycerol. Macromol. Rapid Commun. 25, 921–924 (2004). https://doi.org/10.1002/marc.200300298

    Article  Google Scholar 

  2. E. Bucio, J.C.I. Lara-Estevez, F.A. Ruiz-Trevino et al., Synthesis and characterization of new polyesters derived from diphenols and aromatic diacids chlorides. Polym. Bull. 56, 163–170 (2006). https://doi.org/10.1007/s00289-005-0487-x

    Article  Google Scholar 

  3. H.J. Lanson, Chemistry and technology of alkyd and saturated reactive polyester resins, in Applied Polymer Science, Tess, R., et al., ACS symposium series (American Chemical Society, Washington, DC, 1985), pp. 1181–1204. 0097-6156/85/0285-1181$07.00/0 © 1985

  4. O.D. Ekpa, I.O. Isaac, Kinetic studies on polyesterification of unsaturated oils and diacids in alcoholysis process. Res. J. Appl. Sci. 4, 125–128 (2009). http://medwelljournals.com/abstract/?doi=rjasci.2009.125.128

  5. E.U. Ikhuoria, A.I. Aigbodion, F.E. Okieimen, Enhancing the quality of alkyd resins using methyl ethers of rubber seed oil. Trop. J. Pharm. Res. 3, 311–317 (2004). https://doi.org/10.4314/tjpr.v3i1.14615

    Google Scholar 

  6. M.F. Attallah, K.F. Allan, M.R. Mahmoud, Synthesis of poly (Acrylic Acid-Maleic Acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions. J. Radioanal. Nucl. Chem. 307, 1231–1241 (2016). https://doi.org/10.1007/s10967-015-4349-1

    Article  Google Scholar 

  7. M.M. Hamed, M.F. Attallah, S.S. Metwally, Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene. Radiochim. Acta 102, 1017–1024 (2014). https://doi.org/10.1515/ract-2013-2200

    Google Scholar 

  8. M.F. Attallah, E.H. Borai, M.A. Hilal et al., Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography. J. Hazard. Mater. 195, 73–81 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.007

    Article  Google Scholar 

  9. E.M. El Afifi, M.F. Attallah, E.H. Borai, Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. J. Environ. Radioact. 151, 156–165 (2016). https://doi.org/10.1016/j.jenvrad.2015.10.001

    Article  Google Scholar 

  10. V.V. Milyutin, S.V. Mikheev, V.M. Gelis et al., Coprecipitation of microamounts of cesium with precipitates of transition metal ferrocyanides in alkaline solutions. Radiochemistry 51, 295–297 (2009). https://doi.org/10.1134/S106636220903014X

    Article  Google Scholar 

  11. P. Kandwal, P.K. Mohapatra, S.A. Ansari et al., Selective caesium transport using hollow fibre-supported liquid membrane containing calix[4]arene-bis-naphthocrown-6 as the carrier extractant. Radiochim. Acta 98, 493–498 (2010). https://doi.org/10.1524/ract.2010.1750

    Article  Google Scholar 

  12. Y. Dai, A. Zhang, Extraction equilibrium and thermodynamics of cesium with a new derivative of calix[4]biscrown. J. Radioanal. Nucl. Chem. 302, 575–581 (2014). https://doi.org/10.1007/s10967-014-3287-7

    Article  Google Scholar 

  13. S.B. Clark, A.L. Bryce, A.D. Lueking et al., Factors affecting trivalent f-element adsorption to an acidic sandy soil. in Adsorption of Metals by Geomedia. Variables, Mechanisms, and Model Applications, ed. by E.A. Jenne (Academic Press, San Diego, 1998), pp. 149–164

  14. G. Suresh, M.S. Murali, J.N. Mathur, Thermodynamics of extraction of Am(III) and Eu(III) from different anionic media with Tri-n-octylphosphine oxide. Radiochim. Acta 91, 127–134 (2003). https://doi.org/10.1524/ract.91.3.127.19983

    Article  Google Scholar 

  15. M.D. Karavan, I.V. Smirnov, S.R. Kleshnina et al., Micelle mediated extraction of americium and europium by calix[4]arene phosphine oxides from nitric acid media. J. Radioanal. Nucl. Chem. 311, 599–609 (2017). https://doi.org/10.1007/s10967-016-5096-7

    Article  Google Scholar 

  16. W. Mu, Q. Yu, X. Li et al., Niobate nanofibers for simultaneous adsorptive removal of radioactive strontium and iodine from aqueous solution. J. Alloys Compd. 693, 550–557 (2017). https://doi.org/10.1016/j.jallcom.2016.09.200

    Article  Google Scholar 

  17. C.A. Kozlowski, J. Kozlowska, W. Pellowski et al., Separation of cobalt-60, strontium-90, and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids. Desalination 198, 141 (2006). https://doi.org/10.1016/j.desal.2006.02.005

    Article  Google Scholar 

  18. S.A. Shady, M.M Abou-Mesalam, in 7th Arab international conference on polymer science and technology, 5–9 October, Hurghada, Egypt (2003)

  19. D.H. Guimarães, M.D.M. Brioude, R.D.P. Fiúza et al., Synthesis and characterization of polyesters derived from glycerol and phthalic acid. Mater. Res. 10, 257–260 (2007)

    Article  Google Scholar 

  20. E.A. Ismail, A.M. Motawie, E.M. Sadek, Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egypt. J. Pet. 20, 1–8 (2011). https://doi.org/10.1016/j.ejpe.2011.06.009

    Article  Google Scholar 

  21. M.S. Mansur, A. Mushtaq, Separation of yttrium-90 from strontium-90 via colloid formation. J. Radioanal. Nucl. Chem. 288, 337–340 (2011). https://doi.org/10.1007/s10967-011-1015-0

    Article  Google Scholar 

  22. E. Pretsch, P. Buhlmann, C. Affolter, Structure determination of organic compounds: tables of spectral data, 3rd edn. (Berlin: Springer, 2000). ISBN 3-540-67815-8

  23. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to infrared and Raman spectroscopy, 3rd edn. (Academic press, Inc., New York, 1990)

  24. F. Guo-dong, H. Yun, X. Bin et al., Synthesis and characterization plasticizer epoxy acetyl polyglycerol ester. J. For. Prod. Ind. 3, 100–105 (2014)

    Google Scholar 

  25. F. Esmadi, J. Simm, Sorption of cobalt(II) by amorphous ferric hydroxide. Colloids Surf. A 104, 265–270 (1995). https://doi.org/10.1016/0927-7757(95)03289-4

    Article  Google Scholar 

  26. D. Xu, X. Tan, C. Chen et al., Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154, 407 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Attallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attallah, M.F., Rizk, S.E. & Shady, S.A. Separation of 152+154Eu, 90Sr from radioactive waste effluent using liquid–liquid extraction by polyglycerol phthalate. NUCL SCI TECH 29, 84 (2018). https://doi.org/10.1007/s41365-018-0423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0423-z

Keywords

Navigation