Skip to main content
Log in

Decomposition of continuous soil–gas radon time series data observed at Dharamshala region of NW Himalayas, India for seismic studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Soil–gas radon time series data has been generated at Dharamshala station for seismic studies in NW Himalayas, India. Compared with the influence of temperature and pressure, radon and rainfall have shown a strong correlation. Decomposition of radon time series into three component series (seasonal, trend, and residual) has been done for further recognizing the authentic anomalous values. The irregular patterns in daily and residual radon data have been associated with earthquake events and rainfall. This monitoring station found to be sensitive to the seismic events within a distance of about 70 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Barasol Multi Capteurs.

References

  1. OECD (2008) Costs of inaction of environmental policy challenges report ENV/EPOC (2007)17/REV2

  2. Sharma S, Dasgupta A, Kumar A, Bharanidharan B, Mittal H, Sachdeva R (2014) Earthquake activity in Kishtwar–Dharamshala region of North-West Himalaya. Int J Adv Res 2(8):463–470

    Google Scholar 

  3. Vishwa BSC, Brar KK (2010) Seismicity and vulnerability in Himalayas: the case of Himachal Pradesh, India. Geomat Nat Hazards Risk 1(1):69–84

    Article  Google Scholar 

  4. King CY, Igarashi G (2002) Earthquake-related hydrologic and geochemical changes. Int Handb Earthq Eng Seismol 81A:637–645

    Article  Google Scholar 

  5. Yang TF, Fu CC, Walia V, Chen CH, Chyi LL, Liu TK, Song SR, Lee M, Lin CW, Lin CC (2006) Seismogeochemical variations in SW Taiwan: multi-parameter automatic gas monitoring results. Pure Appl Geophys 163:693–709

    Article  Google Scholar 

  6. Cicerone RD, Ebel JE, Britton J (2009) A systematic compilation of earthquake precursors. Tectonophysics 476:371–396

    Article  Google Scholar 

  7. Matsumoto N, Koizumi N (2011) Recent hydrological and geochemical research for earthquake prediction in Japan. Nat Hazards 69:1247–1260

    Article  Google Scholar 

  8. Martinelli G (2015) Hydrogeological and geochemical precursors of earthquakes: an assessment for possible applications. Boll Geofis Teor Appl 56(2):83–94

    Google Scholar 

  9. King CY, Zhang W, Zhang Z (2006) Earthquake-induced groundwater and gas changes. Pure Appl Geophys 163::633–645

    Article  Google Scholar 

  10. Koike K, Yoshinaga T, Ueyama T, Assue H (2014) Increased radon-222 in soil gas because of cumulative seismicity at active faults. Earth Planets Space 66:57

    Article  Google Scholar 

  11. Fu CC, Yang TF, Chen CH, Lee LC, Wu YM, Liu TK, Walia V, Kumar A, Lai TH (2017a) Spatial and temporal anomalies of soil–gas in northern Taiwan and its tectonic and seismic implications. J Asian Earth Sci 149:64–77

    Article  Google Scholar 

  12. Walia V, Yang TF, Lin SJ, Hong WL, Fu CC, Wen KL, Chen CH (2009a) Geochemical variation of soil–gas composition for fault and earthquake precursory studies along Hsincheng fault in NW Taiwan. Appl Radiat Isot 67:1855–1863

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Li Y, Liu Z, Wang J, Zhou X, Du J (2018) Radon emission from soil gases in the active fault zones in the capital of China and its environmental effects. Sci Rep 8:16772

    Article  PubMed  PubMed Central  Google Scholar 

  14. Walia V, Yang TF, Kumar A, Fu CC, Chiu JM, Chang HH, Wen KL, Chen CH (2012) Temporal variation of soil–gas compositions for earthquake surveillance in Taiwan. Radiat Meas 50:154–159

    Article  Google Scholar 

  15. Walia V, Virk HS, Yang TF, Mahajan S, Walia M, Bajwa BS (2005) Earthquake prediction studies using radon as a precursor in N–W Himalayas, India: a case study. Terr Atmos Oceanic Sci 16:775–804

    Article  Google Scholar 

  16. Walia V, Yang TF, Lin SJ, Hong WL, Fu CC, Wen KL, Chen CH (2009b) Continuous temporal soil–gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan. Radiat Meas 44:934–939

    Article  CAS  Google Scholar 

  17. Nicoli L, Massimiani G, Segantin S, Zucchetti M (2019) Detection of radon emissions during 2016/2017 earthquakes in Abruzzo (Italy). Fresenius Environ Bull 28(2):672–680

    CAS  Google Scholar 

  18. Fu CC, Walia V, Yang TF, Lee LC, Liu TK, Chen CH, Kumar A, Lai TH, Wen KL (2017b) Preseismic anomalies in soil–gas radon associated with 2016 M6.6 Meinong earthquake, Southern Taiwan. Terr Atmos Ocean Sci 28(5):787–798

    Article  Google Scholar 

  19. Fu CC, Yang TF, Tsai MC, Lee LC, Liu TK, Walia V, Chen CH, Chang WY, Kumar A, Lai TH (2017c) Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the longitudinal valley of eastern Taiwan. Chem Geol 469:163–175

    Article  CAS  Google Scholar 

  20. Megonigal JP, Brewer PE, Knee K (2020) Radon as a natural tracer of gas transport through trees. New Phytol 225(4):1470–1475

    Article  CAS  PubMed  Google Scholar 

  21. Papastefanou C (2007) Measuring radon in soil–gas and groundwater: a review. Ann Geophys 50:569–574

    Google Scholar 

  22. Zhang W, Zhang Y, Sun Q (2019) Analyses of influencing factors for radon emanation and exhalation in soil. Water Air Soil Pollut 230:16

    Article  Google Scholar 

  23. Kovács T, Shahrokhi A, Sas Z, Vigh T, Somlai J (2017) Radon exhalation study of manganese clay residue and usability in brick production. J Environ Radioact 168:15–20

    Article  PubMed  Google Scholar 

  24. Yang J, Busen H, Scherb H, Hürkamp K, Guo Q, Tschiersch J (2019) Modeling of radon exhalation from soil influenced by environmental parameters. Sci Total Environ 656:1304–1311

    Article  CAS  PubMed  Google Scholar 

  25. Sas Z, Szántó J, Kovács J, Somlai J, Kovács T (2015) Influencing effect of heat-treatment on radon emanation and exhalation characteristic of red mud. J Environ Radioact 148:27–32

    Article  CAS  PubMed  Google Scholar 

  26. Martino SD, Sabbarese C, Monetti G (1998) Radon emanation and exhalation rates from soils measured with an electrostatic collector. Appl Radiat Isot 49(4):407–413

    Article  Google Scholar 

  27. Walia V, Yang TF, Lin SJ, Kumar A, Fu CC, Chiu JM, Chang HH, Wen KL, Cheng CH (2013) Temporal variation of soil–gas compositions for earthquake surveillance in Taiwan. Radiat Meas 50:154–169

    Article  CAS  Google Scholar 

  28. Fu CC, Wang PK, Lee LC, Lin CH, Chang WY, Giuliani G, Ouzounov D (2015) Temporal variation of gamma rays as a possible precursor of earthquake in the longitudinal valley of Eastern Taiwan. J Asian Earth Sci 114(2):362–372

    Article  Google Scholar 

  29. Fu CC, Lee LC, Yang TF, Lin CH, Chen CH, Walia V, Liu TK, Ouzounov D, Giuliani G, Lai TH, Wang PK (2019) Gamma ray and radon anomalies in northern Taiwan as a possible pre earthquake indicator around the plate boundary. Geofluids 4734513:14

    Google Scholar 

  30. Smetanová I, Holý K, Müllerová M, Anna P (2010) The effect of meteorological parameters on radon concentration in borehole air and water. J Radioanal Nucl Chem 283:101–109

    Article  Google Scholar 

  31. Jaishi HP, Singh S, Tiwari RP, Tiwari RC (2014) Correlation of radon anomalies with seismic events along Matfault in Serchhip District, Mizoram, India. Appl Radiat Isot 86:79–84

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Walia V, Arora BR, Yang TF, Lin SJ, Fu CC, Chen CH, Wen KL (2015) Identifications and removal of diurnal and semi-diurnal variations in radon time-series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Nat Hazards 79(1):317–330

    Article  Google Scholar 

  33. Arora BR, Kumar A, Walia V, Yang TF, Fu CC, Liu TK, Wen KL, Chen CH (2017) Cleaning soil–gas radon at Hsinchu, Taiwan for contamination from meteorological and hydrological parameters: a step forward to identify earthquake precursors. J Asian Earth Sci 149:49–63

    Article  Google Scholar 

  34. Choubey VM, Kumar N, Arora BR (2009) Precursory signatures in the radon and geohydrological borehole data for M4.9 Kharsali earthquake of Garhwal Himalaya. Sci Total Environ 407(22):5877–5883

    Article  CAS  PubMed  Google Scholar 

  35. Ramola RC, Prasad Y, Prasad G, Kumar S, Choubey VM (2008) Soil–gas radon as seismotectonic indicator in Garhwal Himalaya. Appl Radiat Isot 66(10):1523–1530

    Article  CAS  PubMed  Google Scholar 

  36. Siino M, Scudero S, Cannelli V, Piersanti A, D’Alessandro A (2019) Multiple seasonality in soil radon time series. Sci Rep 9:8610

    Article  PubMed  PubMed Central  Google Scholar 

  37. Torkar D, Zmazek B, Vaupotic J, Kobal I (2010) Application of artificial neural networks in simulating radon levels in soil gas. Chem Geol 270(1–4):1–8

    Article  CAS  Google Scholar 

  38. Zmazek B, Todorovski L, Dzeroski S, Vaupotic J, Kobal I (2003) Application of decision trees to the analysis of soil radon data for earthquake prediction. Appl Radiat Isot 58(6):697–706

    Article  CAS  PubMed  Google Scholar 

  39. Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh. Geological Society of India, Bangalore, 408 pp

    Google Scholar 

  40. Kumar S, Mahajan AK (2001) Seismotectonics of the Kangra region, northwest Himalaya. Tectonophysics 331(4):359–337

    Article  Google Scholar 

  41. Thakur VC, Jayangondaperumal R, Joevivek V (2018) Seismotectonics of central and NW Himalaya: plate boundary–wedge thrust earthquakes in thin- and thick-skinned tectonic framework. Geol Soc Lond Spec Publ 481:41–63

    Article  Google Scholar 

  42. Central Ground Water Board, Division NH, Dharamshala (2013) Groundwater information booklet, District Kangra, Himacahal Pradesh, India. Technical Series E, pp 1–16

  43. Dhar S, Randhawa S, Kishore N, Sood RK (2006) Lineament control and seismo-tectonic activity of the areas around Dharamsala, Himalayan Frontal. Zone, Himachal Pradesh, India. Himalayas (Geological Aspects). In: Sakalni PS (ed) vol 4. Satish Serial Publishing House, Delhi, pp 73–78

  44. Kumar A, Singh S, Mahajan S, Bajwa BS, Kalia R, Dhar S (2009) Earthquake precursory studies in Kangra valley of north-west Himalayas, India, with special emphasis on radon emission. Appl Radiat Isot 67:1904–1911

    Article  CAS  PubMed  Google Scholar 

  45. Galli G, Cannelli V, Nardi A, Piersanti A (2019) Implementing soil radon detectors for long term continuous monitoring. Appl Radiat Isot 153:108813

    Article  CAS  PubMed  Google Scholar 

  46. De Simone G, Lucchetti C, Galli G, Tuccimei P (2016) Correcting for H2O interference using electrostatic collection-based silicon detectors. J Environ Radioact 162–163:146–153

    Article  PubMed  Google Scholar 

  47. Ratner B (2009) The correlation coefficient: Its values range between + 1/–1, or do they? J Target Meas Anal Mark 17:139–142

    Article  Google Scholar 

  48. Guerra M, Lombardi S (2001) Soil–gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy). Tectonophysics 339:511–522

    Article  CAS  Google Scholar 

  49. Jaishi H, Singh S, Tiwari R, Tiwari R (2014) Temporal variation of soil radon and thoron concentrations in Mizoram (India), associated with earthquakes. Nat Hazards 72(2): 443–454

    Article  Google Scholar 

  50. Kumar A, Walia V, Singh S, Bajwa BS, Mahajan S, Dhar S, Yang T (2012) Earthquake precursory studies at Amritsar Punjab, India using radon measurement techniques. Int J Phys Sci 7:5669–5677

    CAS  Google Scholar 

  51. Singh S, Sharma DK, Dhar S, Randhawa SS (2006) Geological significance of soil–gas radon: a case study of Nurpur area, district Kangra, Himachal Pradesh, India. Radiat Meas 41(4):482–485

    Article  CAS  Google Scholar 

  52. Ball TK, Nicholson RA, Peachey D (1983) Effects of meteorological variables on certain soil gases used to detect buried ore deposits. Trans Instit of Min Metall 92(b):183–190

    CAS  Google Scholar 

  53. Rudakov VP (1985) Nature of the seasonal variations in subsoil radon. Geokhimiya 7:133–135

    Google Scholar 

  54. Clement WE, Wilkening MH (1974) Atmospheric pressure effects on 222Rn transport across the earth–air interface. J Geophys Res 79(33):5025–5029

    Article  Google Scholar 

  55. Singh MR, Ramola C, Singh NP, Singh S, Virk HS (1988) The influence of meteorological parameters on soil–gas radon. J Assoc Expl Geophys 9:85–90

    Google Scholar 

  56. Kulali F, Akkurt I, Ozgur N (2017) The effect of meteorological parameters on radon concentration in soil gas. Acta Physica Pol 132(3-II):999–1001

    Article  CAS  Google Scholar 

  57. Yakut H, Tabar E, Yildirim E, Zenginerler Z, Ertugral F, Demirci N (2017) Soil–gas radon measurement around fault lines on the western section of the North Anatolian fault zone in Turkey. Radiat Prot Dosim 173(4):405–413

    CAS  Google Scholar 

  58. Piersanti A, Cannelli V, Galli G (2015) Long term continuous radon monitoring in a seismically active area. Ann Geophys 58(4):S437

    Google Scholar 

  59. Kainan SUN, Qiuju GUO, Cheng J (2004) The effect of some soil characteristics on soil radon concentration and radon exhalation from soil surface. J Nucl Sci Technol 41(11):1113–1117

    Article  Google Scholar 

  60. Piersanti A, Cannelli V, Galli G (2016) The Pollino 2012 seismic sequence: clues from continuous radon monitoring. Solid Earth 7:1303–1316

    Article  Google Scholar 

  61. Inan S, Kop A, Cetin H, Kulak F, Pabuccu Z, Seyis C, Ergintav S, Tan O, Saatcilar R, Bodur MN (2012) Seasonal variations in soil radon emanation: long-term continuous monitoring in light of seismicity. Nat Hazards 62(2):575–591

    Article  Google Scholar 

  62. Yasuoka Y, Shinogi M (1997) Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys 72:759–761

    Article  CAS  PubMed  Google Scholar 

  63. Dagum EB (2010) Time series modeling and decomposition. Statistica 70(4):434–457

    Google Scholar 

  64. Nwogu EC, Iwueze IS, Dozie KCN, Mbachu HI (2019) Choice between mixed and multiplicative models in time series decomposition. Int J Stat Appl Math 9(5):153–159

    Google Scholar 

  65. Prema V, Rao KU (2015) Time series decomposition model for accurate wind speed forecast. Renewables 2:18

    Article  Google Scholar 

  66. Nduka UC, Iwueze SI, Nwogu EC (2017) Fitting polynomial trend to time series by the method of Buys-Ballot estimators. Commun Stat Theory Methods 46(9):4520–4538

    Article  Google Scholar 

  67. Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117:1025–1044

    Article  Google Scholar 

  68. Hartmann J, Levy JK (2005) Hydrogeological and gas geochemical earthquake precursors: a review for application. Nat Hazards 34:279–304

    Article  Google Scholar 

  69. Yang TF, Walia V, Chyi LL, Fu CC, Chen C-H, Liu TK, Song CS, Lee RY, Lee M (2005) Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiat Meas 40:496–502

    Article  CAS  Google Scholar 

  70. Schumann RR, Gundersen LCS (1997) Geologic and climatic controls on the radon emanation coefficient. Environ Int 22(1):439–446

    Google Scholar 

  71. Barkat A, Ali A, Rehman K, Awais M, Tariq MA, Ahmed J, Amin MA, Iqbal T (2018) Multi-precursory analysis of Phalla earthquake (July 2015; Mw 5.1) Near Islamabad. Pakistan. Pure Appl Geophys 175:4289–4304

    Article  Google Scholar 

  72. Chetia T, Sharma G, Dey C, Raju PLN (2020) Multi-parametric approach for earthquake precursor detection in Assam Valley (Eastern Himalaya, India) using satellite and ground observation data. Geotecton 54:83–96

    Article  Google Scholar 

  73. Shukla V, Chauhan V, Kumar N, Hazarika D (2020) Assessment of Rn-222 continuous time series for the identification of anomalous changes during moderate earthquakes of the Garhwal Himalaya. Appl Radiat Isot 166:109327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the financial support from the Himachal Pradesh Council for Science Technology and Environment (HIMCOSTE) for undertaking this joint study of HIMCOSTE and the Government Post Graduate College Dharamshala as part of the R&D program of HIMCOSTE. The India Meteorological Department (IMD), the Government of India for providing necessary meteorological and seismological data used in this study are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arvind Kumar or Vivek Walia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, S., Randhawa, S.S., Kumar, A. et al. Decomposition of continuous soil–gas radon time series data observed at Dharamshala region of NW Himalayas, India for seismic studies. J Radioanal Nucl Chem 327, 1019–1035 (2021). https://doi.org/10.1007/s10967-020-07575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07575-x

Keywords

Navigation