Skip to main content
Log in

Studies on uranium extraction from leach liquor of the mineralized shear zone at El-Missikat area using tri-n-octylamine

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fast extraction of uranium from Egyptian low-grade uranium mineralization sulfate leach liquor was studied with kerosene solutions of tri-n-octylamine (TOA). The parameters affecting uranium extraction were studied and the optimum conditions were determined. The equilibrium isotherm demonstrated the association of four moles of TOA per mole of uranium. Thermodynamic studies at different temperatures indicated that the extraction process was exothermic, favorable and spontaneous in nature. The organic phase loaded with uranyl sulfate under the optimum extraction conditions were examined by infrared spectrometry. The McCabe–Thiele plot for circuit of uranium with TOA predicted three extraction stages and two stripping stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Uehara A, Takao K (2019) Recent activities in the field of separation science and technology of radioactive elements. J Nucl Sci Technol 56(8):669–670. https://doi.org/10.1080/00223131.2019.1630023

    Article  CAS  Google Scholar 

  2. Wu S, Wang L, Zhang P, El-Shall H, Moudgil B, Huang X, Zhao L, Zhang L, Feng Z (2018) Simultaneous recovery of rare earths and uranium from wet process phosphoric acid using solvent extraction with D2EHPA. Hydrometallurgy 175:109–116. https://doi.org/10.1016/j.hydromet.2017.10.025

    Article  CAS  Google Scholar 

  3. Dartiguelongue A, Chagnes A, Provost E, Fürst W, Cote G (2016) Modelling of uranium (VI) extraction by D2EHPA/TOPO from phosphoric acid within a wide range of concentrations. Hydrometallurgy 165:57–63. https://doi.org/10.1016/j.hydromet.2015.11.007

    Article  CAS  Google Scholar 

  4. Ibrahim ME, Lasheen TA, Hassib HB, Helal AS (2014) Separation and extraction of uranium from leach liquor containing uranium and molybdenum by solvent extraction with LIX 622N. J Dispersion Sci Technol 35(4):599–606. https://doi.org/10.1080/01932691.2013.811685

    Article  CAS  Google Scholar 

  5. Hung NT, Thuan LB, Thanh TC, Watanabe M, Do Van K, Thuy NT, Nhuan H, Minh PQ, Mai TH, Van Tung N, Tra DTT, Jha MK, Lee J-Y, Jyothi RK (2020) Separation of thorium and uranium from xenotime leach solutions by solvent extraction using primary and tertiary amines. Hydrometallurgy 105506. https://doi.org/10.1016/j.hydromet.2020.105506

  6. Kumar JR, Kim J-S, Lee J-Y, Yoon H-S (2010) Solvent extraction of uranium(VI) and separation of vanadium (V) from sulfate solutions using Alamine 336. J Radioanal Nucl Chem 285(2):301–308. https://doi.org/10.1007/s10967-010-0552-2

    Article  CAS  Google Scholar 

  7. Khanramaki F, Shirani AS, Safdari J, Torkaman R (2018) Investigation of liquid extraction and thermodynamic studies on uranium from sulfate solution by Alamine 336 as an extractant. Int J Environ Sci Technol 15(7):1467–1476. https://doi.org/10.1007/s13762-017-1473-1

    Article  CAS  Google Scholar 

  8. Mosleh M, El-Hakim EH, Ahmed AZ, Abd El-Ghany MS, El-Didamony AM (2020) Uranium extraction from different acidic media using a novel solvent-impregnated resin. Bulletin of Faculty of Science, Zagazig University. https://doi.org/10.21608/bfszu.2020.40456.1037

  9. Zhu Z, Pranolo Y, Cheng CY (2015) Separation of uranium and thorium from rare earths for rare earth production – A review. Miner Eng 77:185–196. https://doi.org/10.1016/j.mineng.2015.03.012

    Article  CAS  Google Scholar 

  10. Goldenberg JF, Abbruzzese C (1983) Extraction of uranium from heap leach liquor with tri-n-octylamine: equilibrium data and flow-sheet calculations. Int J Miner Process 10(4):241–254. https://doi.org/10.1016/0301-7516(83)90015-7

    Article  CAS  Google Scholar 

  11. Coleman CF, Brown KB, Moore JG, Crouse DJ (1958) Solvent extraction with alkyl amines. Ind Eng Chem 50(12):1756–1762. https://doi.org/10.1021/ie50588a032

    Article  CAS  Google Scholar 

  12. Chagnes A, Rager M-N, Courtaud B, Thiry J, Cote G (2010) Speciation of vanadium (V) extracted from acidic sulfate media by trioctylamine in n-dodecane modified with 1-tridecanol. Hydrometallurgy 104(1):20–24. https://doi.org/10.1016/j.hydromet.2010.04.004

    Article  CAS  Google Scholar 

  13. Stas J, Chino O, Jammoal Y, Albaraka Z (2017) Selectivity of vanadium over iron during the extraction of vanadium by TOA from aqueous H2SO4 leaching liquor. Rev Roum Chim 62(2):115–122

    Google Scholar 

  14. Hong NT, Hau HH, Giao TNQ (2018) Study on extraction behavior of vanadium from acidic sulfate solutions. Can Tho Univ J Sci 54(8):81–87. https://doi.org/10.22144/ctu.jen.2018.041

    Article  Google Scholar 

  15. Biswas RK, Karmakar AK, Mottakin M (2017) Study of the solvent extraction of V(V) from nitrate medium by tri-n-octylamine dissolved in kerosene. JOM 69(10):1945–1949. https://doi.org/10.1007/s11837-017-2470-z

    Article  CAS  Google Scholar 

  16. Wahyu Rachmi P, Tri H (2017) The extraction of Nd in nitrate acidic with addition of Al(NO3)3 as salting out agent using TOA—TOPO mixed extractant. In: Proceedings of the meeting and scientific presentations on basic science research and nuclear technology, Indonesia, 28 November 2017 2017. Ekstraksi nd dalam keasaman nitrat dengan penggaram Al(NO3)3 menggunakan campuran ekstraktan TOA—TOPO. Center for Accelerator Science and Technology, National Nuclear Energy Agency, pp 429–436

  17. Eskandari Nasab M (2014) Solvent extraction separation of uranium (VI) and thorium (IV) with neutral organophosphorus and amine ligands. Fuel 116:595–600. https://doi.org/10.1016/j.fuel.2013.08.043

    Article  CAS  Google Scholar 

  18. Shohaib RE, Desouky OA, Awadalla GS, Mohamady SE (2014) Liquid–liquid extraction studies on Th(IV) and U(VI) from Egyptian monazite using tertiary amine. IOSR J Appl Chem 7(7):5–15

    Article  CAS  Google Scholar 

  19. Crouse DJ, Brown KB (1955) Amine extract processes for uranium recovery from sulfate liquors. Vol. I. https://doi.org/10.2172/4349120

  20. Južnič K, Fedina Š (1974) The extraction of uranium (IV) from sulphuric acid by tri-octylamine in benzene. Microchim Acta 62(1):39–44. https://doi.org/10.1007/BF01271414

    Article  Google Scholar 

  21. Behera P, Mishra S, Mohanty I, Chakravortty V (1994) Liquid–liquid extraction of Mo(VI) and U(VI) by alamine 310 and its binary mixtures with TBP, DPSO, and cyanex 301 from H2SO4 acid medium. Radiochim Acta 65(4):233–238. https://doi.org/10.1524/ract.1994.65.4.233

    Article  CAS  Google Scholar 

  22. Gupta CK, Singh H (2003) Uranium resource processing: secondary resources. Springer Science & Business Media

  23. Kulkarni PS, Mukhopadhyay S, Ghosh SK (2009) Liquid membrane process for the selective recovery of uranium from industrial leach solutions. Ind Eng Chem Res 48(6):3118–3125. https://doi.org/10.1021/ie800819q

    Article  CAS  Google Scholar 

  24. Lo TC, Baird MHI, Hanson C (1991) Handbook of solvent extraction. Krieger, Malabar (Fla.)

  25. Merritt RC (1971) The extractive metallurgy of uranium. Colorado School of Mines Research Institute

  26. Karpas Z (2015) Analytical chemistry of uranium: environmental, forensic, nuclear, and toxicological applications. CRC Press

  27. Budnitz RJ, Rogner HH, Shihab-Eldin A (2018) Expansion of nuclear power technology to new countries—SMRs, safety culture issues, and the need for an improved international safety regime. Energy Policy 119:535–544. https://doi.org/10.1016/j.enpol.2018.04.051

    Article  Google Scholar 

  28. Ahmed MR, Mohammed HS, El-Feky MG, Abdel-Monem YK (2020) Gold leaching using thiourea from uranium tailing material, Gabal El-Missikat, Central Eastern Desert, Egypt. J Sustain Metall 6 (2). https://doi.org/10.1007/s40831-020-00295-2

  29. Mohammed HS, Abdel-Monem YK, El-Feky MG, Omer SA, Ahmed MR (2019) Leaching of El-Missikat low-grade fluoritized uranium ore by sulfuric acid: mechanism and kinetic. J Radioanal Nucl Chem 319(1):245–255. https://doi.org/10.1007/s10967-018-6289-z

    Article  CAS  Google Scholar 

  30. Mohammed H, Sadeek S, Mahmoud AR (2016) Accurate determination of uranium and thorium in Egyptian oil ashes. Microchem J 124:699–702. https://doi.org/10.1016/j.microc.2015.10.034

    Article  CAS  Google Scholar 

  31. Mohammed H, Sadeek S, Mahmoud AR, Zaky D (2016) Comparison of AAS, EDXRF, ICP-MS and INAA performance for determination of selected heavy metals in HFO ashes. Microchem J 128:1–6. https://doi.org/10.1016/j.microc.2016.04.002

    Article  CAS  Google Scholar 

  32. Mohammed H, Sadeek S, Mahmoud AR, Diab H, Zaky D (2016) Natural radioactivity and radiological hazard assessment of Egyptian oil ashes. Environ Sci Pollut Res 23(15):15584–15592. https://doi.org/10.1007/s11356-016-6736-8

    Article  CAS  Google Scholar 

  33. Marczenko Z, Balcerzak M (2000) Separation, preconcentration and spectrophotometry in inorganic analysis, vol 10. Analytical Spectroscopy Library. Elsevier Science

  34. White DA, Fathurrachman, (1994) Extraction of uranium (VI) and uranium (IV) from hydrochloric acid using tri-n-octylamine in a benzene diluent. Hydrometallurgy 36(2):161–168. https://doi.org/10.1016/0304-386X(94)90003-5

    Article  CAS  Google Scholar 

  35. Coleman CF (1963) Amines as extractants. Nucl Sci Eng 17(2):274–286. https://doi.org/10.13182/NSE63-A28890

    Article  Google Scholar 

  36. Zhou H, Dong Y, Wang Y, Zhao Z, Xiao Y, Sun X (2019) Recovery of Th(IV) from leaching solutions of rare earth residues using a synergistic solvent extraction system consisting of Cyanex 572 and n-octyl diphenyl phosphate (ODP). Hydrometallurgy 183:186–192. https://doi.org/10.1016/j.hydromet.2018.12.008

    Article  CAS  Google Scholar 

  37. Waite BDA (1964) Distribution of uranium and fluoride in some two-phase solvent systems

  38. Larkin PJ (2018) Infrared and Raman spectroscopy; principles and spectral interpretation. 2nd edn. Elsevier

  39. Müller K, Brendler V, Foerstendorf H (2008) Aqueous uranium (VI) hydrolysis species characterized by attenuated total reflection fourier-transform infrared spectroscopy. Inorg Chem 47(21):10127–10134. https://doi.org/10.1021/ic8005103

    Article  CAS  PubMed  Google Scholar 

  40. Amalvy JI, Wanless EJ, Li Y, Michailidou V, Armes SP, Duccini Y (2004) Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. Langmuir 20(21):8992–8999. https://doi.org/10.1021/la049156t

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Samir Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.R., Mohammed, H.S., El-Feky, M.G. et al. Studies on uranium extraction from leach liquor of the mineralized shear zone at El-Missikat area using tri-n-octylamine. J Radioanal Nucl Chem 327, 731–743 (2021). https://doi.org/10.1007/s10967-020-07545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07545-3

Keywords

Navigation