Skip to main content
Log in

Radioactivity of blast-furnace slags from metallurgical enterprises of Ukraine

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radionuclide composition of the fractions of dump and granular blast-furnace slags from Ukrainian enterprises, their compliance with the radiation safety standards of Ukraine and international radiological indicators were determined. The blast-furnace slag contains natural radionuclides: 226Ra, 232Th and 40K. All investigated slags correspond to the safe level of international radiological indicators, belong to the first class of radiation hazard (Ukraine) and can be used in construction without restrictions. A direct correlation between the acidity of slag fractions and the increase in radiological parameters was determined. The hypothesis was proposed about radionuclide sorption on the negatively charged surface of the slag particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billa J, Han FX, Didla S, Ankrah M, Yu H, Dimpah J, Brempong O, Adzanu S (2015) Evaluation of radioactivity levels in fertilizers commonly used in the southern USA. J Radioanal Nucl. https://doi.org/10.1007/s10967-015-4071-z

    Article  Google Scholar 

  2. Cinelli G, Tollefsen T, Bossew P, Gruber V, Bogucarskis K, De Felice L, De Cort V (2019) Digital version of the European Atlas of natural radiation. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2018.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Żak A, Isajenko K, Piotrowska B, Kuczbajska M, Ząbek A, Szczygielski T (2008) Natural radioactivity of wastes. Nukleonika 55(3):387–391

    Google Scholar 

  4. Louw I (2020) Potential radiological impact of the phosphate industry in South Africa on the public and the environment (paper 1). J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2020.106214

    Article  PubMed  Google Scholar 

  5. Khobotova EB, Ignatenko MI, Belichenko EA, Ponikarovskaya SV (2020) Radiation properties of coal and thermal industries waste. Occup Saf Ind. https://doi.org/10.24000/0409-2961-2020-8-60-67

    Article  Google Scholar 

  6. Skoko B, Babić D, Marović G, Papić S (2019) Environmental radiological risk assessment of a coal ash and slag disposal site with the use of the ERICA Tool. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2019.106018

    Article  PubMed  Google Scholar 

  7. Ene A, Pantelică A (2011) Characterization of metallurgical slags using low-level gamma-ray spectrometry and neutron activation analysis. Rom J Phys 56(7–8):1011–1018

    CAS  Google Scholar 

  8. Sofilić T, Barišić D, Rastovčan Mioč A, Sofilić U (2010) Radionuclides in steel slag intended for road construction. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-009-0431-x

    Article  Google Scholar 

  9. Uğur F, Turhan Ş, Sahan H, Sahan M, Gören E, Gezer F, Yegingil Z (2013) Investigation of the activity level and radiological impacts of naturally occurring radionuclides in blast furnace slag. Radiat Prot Dosim. https://doi.org/10.1093/rpd/ncs131

    Article  Google Scholar 

  10. Mahmoud KR (2007) Radionuclide content of local and imported cements used in Egypt. J Radiolog Protect. https://doi.org/10.1088/0952-4746/27/1/004

    Article  Google Scholar 

  11. Gijbels K, Landsberger S, Samyn P, Iacobescu RI, Pontikes Y, Schreurs S, Schroeyers W (2019) Radiological and non-radiological leaching assessment of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.01.089

    Article  PubMed  Google Scholar 

  12. Radiation Safety Standards of Ukraine (NRBU-97) (1998) State hygienic standards GGN 6.6.1.-6.5.001.98. Official publication, Kiev

    Google Scholar 

  13. JCPDS PDF-1 File (1994) Intern. Committee for Diffraction Data, release 1994 PA, USA. www.ICDD.com.

  14. Rodriguez-Carvajal J, Roisnel T (1998) FullProf. 98 and WinPLOTR: New Windows 95/NT applications for diffraction. Commission for Powder Diffraction, Intern. Union of Crystallography, Newsletter N 20

  15. Khobotova EB, Hraivoronska IV, Ihnatenko MI, Kaliuzhna IuS (2020) Adsorption of organic dyes on metallurgical slag of Fe-Ni alloy production. Russ J Chem Chem Technol. https://doi.org/10.6060/ivkkt.20206308.6197

    Article  Google Scholar 

  16. Office European Commission report on radiological protection principles concerning the natural radioactivity of building materials radiation protection 112 (EC 1999) (1999) Directorate-General Environment, Nuclear Safety and Civil Protection, Luxembourg

  17. Krisyuk EM (1989) Radiation background of premises. Energoatomizdat, Moscow

    Google Scholar 

  18. Sources and effects of ionizing radiation. UNSCEAR 2000 Report to General Assembly, with scientific annexes (2000) Vol. 1: sources. United Nations, New York

  19. Tufail M (2012) Radium equivalent activity in the light of UNSCEAR report. Environ Monit Assess 184(9):5663–5667

    Article  CAS  Google Scholar 

  20. Exposure to radiation from natural radioactivity in building materials. Report by group of experts of the OECD (NEA–OECD 1979) (1979) Nuclear Energy Agency (NEA), Paris

  21. Effects of ionizing radiation: report to the General Assembly, with scientific annexes (UNSCEAR (2008)) (2010) United Nations, New York

  22. Recommendations of the International Commission on radiological protection (1991) Publication 60: 1990. Annals of the ICRP: Pergamon Press. 21(1‒3)

  23. Kolo MT, Amin YM, Khandaker MU, Abdullah WHB (2017) Radionuclide concentrations and excess lifetime cancer risk due to gamma radioactivity in tailing enriched soil around Maiganga coal mine, Northeast Nigeria. Int J Radiat Res. https://doi.org/10.18869/acadpub.ijrr.15.1.71

    Article  Google Scholar 

  24. Radiation protection and safety of radiation sources: international main safety norms (2010) MAGATE, Vienna

  25. Khobotova EB, Hraivoronska IV, Kaliuzhna IuS, Ihnatenko MI (2019) Concrete radiation safety. Occup Saf Ind. https://doi.org/10.24000/0409-2961-2019-8-50-56

    Article  Google Scholar 

  26. Khobotova EB, Kalmykova YuS, Ihnatenko MI, Larin VI (2017) Natural radionuclides of blast furnace slag. Ferrous Metals 1:23–28

    Google Scholar 

  27. Lukuttsova NP (2010) Reduction of radioactivity of raw materials and building materials. BGITA, Bryansk

    Google Scholar 

  28. Khobotova EB, Hraivoronska IV (2019) Secondary use of metallurgical slags as sorbents in wastewater treatment. Ferrous metals 7:55–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Khobotova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khobotova, E., Kaliuzhna, I., Ihnatenko, M. et al. Radioactivity of blast-furnace slags from metallurgical enterprises of Ukraine. J Radioanal Nucl Chem 327, 279–286 (2021). https://doi.org/10.1007/s10967-020-07505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07505-x

Keywords

Navigation