Skip to main content
Log in

Determination of radiological hazard parameters and radioactivity concentrations in bauxite samples: the case of the Sutlegen Mine Region (Antalya, Turkey)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Natural radioactivity mainly consists of U series, Th series, and K in soil and rocks. This study focuses on determining natural radioactivity concentrations and radiological hazard parameters of 34 ore samples collected from the Sutlegen bauxite deposit in the Kas district of Antalya province by using the gamma-ray spectrometry method. Considering these results, it was suggested that the residential area should be kept away from the ore deposit and that the use of bauxite in the region as a construction material may pose a radiation risk for the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yalcin F, Ilbeyli N, Demirbilek M, Yalcin MG, Gunes A, Kaygusuz A, Ozmen SF (2020) Estimation of natural radionuclides’ concentration of the plutonic rocks in the Sakarya Zone, Turkey using multivariate statistical methods. Symmetry 12(6):1–18. https://doi.org/10.3390/sym12061048

    Article  CAS  Google Scholar 

  2. Ramli AT, Sanusi MSM, Lee MH et al (2016) Spatial distribution of natural γ radiation exposure and its relationship to soil types. Nat Hazards 84:1859–1872. https://doi.org/10.1007/s11069-016-2524-5

    Article  Google Scholar 

  3. Goronovski A, Tkaczyk AH (2019) Radiological assessment of the bauxite residue valorization chain. J Radioanal Nucl Chem 321(3):955–963. https://doi.org/10.1007/s10967-019-06676-6

    Article  CAS  Google Scholar 

  4. Nguelem EJM, Ndontchueng MM, Motapon O (2016) Determination of 226Ra, 232Th, 40K, 235U and 238U activity concentration and public dose assessment in soil samples from bauxite core deposits in Western Cameroon. Springerplus 5(1):1–12. https://doi.org/10.1186/s40064-016-2895-9

    Article  CAS  Google Scholar 

  5. Nguelem EJM, Ndontchueng MM, Motapon O, Darko EO, Simo A (2016b) Determination of 226Ra, 232Th, 40K, 235U and 238U in soil samples from bauxite core deposits in western Cameroon. Radioprotection 51(3):199–205.https://www.radioprotection.org/articles/radiopro/pdf/2016/04/radiopro150106.pdf

  6. Nyamsari DG, Yalcin F, Mboh MT, Alfred FG, Yalcin MG (2019) Natural radioactive risk assessment in top soil and possible health effect in Minim and Martap villages, Cameroon: using radioactive risk index and statistical analysis. Kerntechnik 84(2):115–122. https://doi.org/10.3139/124.110927

    Article  Google Scholar 

  7. Parmaksiz A (2020) Radiological assessment of the bauxite mining in Turkey and estimation of radiation dose contribution of the red mud as a concrete agent of the model room by using Resrad-Buıld computer code. J Radioanal Nucl Chem 326(2):1107–1118. https://doi.org/10.1007/s10967-020-07397-x

    Article  CAS  Google Scholar 

  8. Ozer O, Yalcin MG (2020) Correlation of chemical contents of Sutlegen (Antalya) bauxites and regression analysis. AIP Conference Proceedings 2293(1):180008–180012 AIP Publishing https://doi.org/10.1063/5.0026731

  9. Yilmaz M, Ozmen SF (2020) Radiological risk assessment of fish feed and feed raw materials. Aquac Res 51(6):2190–2196. https://doi.org/10.1111/are.14523

    Article  CAS  Google Scholar 

  10. UNSCEAR (2000) Report to the general assembly. Annex B: exposures from natural radiation sources

  11. El-Taher A, Alharbi A (2013) Elemental analysis of natural quartz from Um Higlig, Red Sea Aea, Egypt by instrumental neutron activation analysis. Appl Radiat Isot 82:67–71. https://doi.org/10.1016/j.apradiso.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  12. Krieger R (1981) Radioactivity of construction materials. Betonw Fert Tech 47:468–473. https://doi.org/10.1007/s10967-017-5476-7

    Article  CAS  Google Scholar 

  13. Unal S, Yalcin MG, Ocak S, Yalcin R, Ozmen SF (2018) Computation of gamma radioactivity of natural rocks in the vicinity of Antalya province and its effect on health. Kerntechnik 83(2):112–120. https://doi.org/10.3139/124.110895

    Article  Google Scholar 

  14. Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM (1999) The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. J Environ Radioact 46(2):243–250. https://doi.org/10.1016/S0265-931X(98)00143-X

    Article  CAS  Google Scholar 

  15. World Health Organization (2018) Protection of the public against exposure indoors due to Radon and other natural sources of radiation. IAEA Safety Standards SSG-32

  16. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  17. Ravisankar R, Vanasundari K, Suganya M, Raghu Y, Rajalakshmi A, Chandrasekaran A, Sivakunar S, Chandramohan J, Vijayagopal P, Venkatraman B (2014) Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot 85:114–127. https://doi.org/10.1016/j.apradiso.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  18. Akhtar N, Tufail M, Ashraf M, Mohsin A, Iqbal M (2005) Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan. Radiat Meas 39(1):11–14. https://doi.org/10.1016/j.radmeas.2004.02.016

    Article  CAS  Google Scholar 

  19. Darwish DAE, Abul-Nasr KTM, El-Khayatt AM (2015) The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J Radiat Res Appl Sci 8(1):17–25. https://doi.org/10.1016/j.jrras.2014.10.003

    Article  CAS  Google Scholar 

  20. Yalcin MG, Unal S (2018) Natural radioactivity levels and associated radiation hazards in ophiolites around Tekirova, Kemer, and Kumluca Touristic Regions in Antalya, Turkey. J Radioanal Nucl Chem 316(1):321–330. https://doi.org/10.1007/s10967-018-5760-1

    Article  CAS  Google Scholar 

  21. Ince Z, Atakoglu OO, Yalcin MG (2021) Multivariate and spatial statistical analysis of geochemical data of dolomite: the case of ındustrial raw materials’ differentiation. Montes Taurus J Pure Appl Math 3(2):8–28

    Google Scholar 

  22. Yalcin MG, Nyamsari DG, Atakoglu OO, Yalcin F (2021) Chemical and statistical characterization of beach sand sediments: implication for natural and anthropogenic origin and paleo-environment. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03280-8

    Article  Google Scholar 

  23. International Atomic Energy Agency (IAEA) (2003) Extent of environmental contamination by naturally occurring radioactive materials (NORM) and technological options for mitigation. Technical Report Series No. 419 Vienna

  24. Turhan S, Kose A, Varinlioglu A, Sahin NK, Arıkan I, Oguz F, Ozdemir T (2012) Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples. Geoderma 187:117–124. https://doi.org/10.1016/j.geoderma.2012.04.017

    Article  CAS  Google Scholar 

  25. Turhan S, Arikan IH, Demirel H, Gungor N (2011) Radiometric analysis of raw materials and end products in the Turkish ceramics industry. Radiat Phys Chem 80(5):620–625. https://doi.org/10.1016/j.radphyschem.2011.01.007

    Article  CAS  Google Scholar 

  26. Kalayci S (2010) SPSS applied multivariate statistical techniques, 5. Asil Publishing, Ankara

    Google Scholar 

  27. Ozer O, Yalcin F, Tarinc OK, Yalcin MG (2020) Investigation of suitability of marbles to standards with inequality expressions and statistical approach using some physical and mechanical properties. J Inequal Appl 2020:1–15. https://doi.org/10.1186/s13660-020-02360-6

    Article  Google Scholar 

  28. Tarinc OK, Ozer O, Aydin B, Yalcin MG (2019) Comparison of physical-mechanical properties of Clova and Lyca marbles in Akcay (Antalya) region by using independent-samples T-test statistics. In: The 2nd Mediterranean international conference of pure applied mathematics and related areas, Paris, France, 28–31. https://drive.google.com/file/d/1M43VonWWg5sZT2THAY1Eqk8f8W19NVIZ/view

  29. Ozer O, Yalcin F, Nyamsari DG, Yalcin MG (2019) Appraisal of metal accumulation in beach sand using contamination indices and multivariate statistical analysis. Proceedings book of the 2nd Mediterranean, 32. https://drive.google.com/file/d/1M43VonWWg5sZT2THAY1Eqk8f8W19NVIZ/view

  30. Yalcin MG, Coskun B, Nyamsari DG, Yalcin F (2019) Geomedical, ecological risk, and statistical assessment of hazardous elements in shore sediments of the Iskenderun Gulf, Eastern Mediterranean, Turkey. Environ Earth Sci 78(15):1–28. https://doi.org/10.1007/s12665-019-8435-5

    Article  CAS  Google Scholar 

  31. Yalcin F, Ozer O, Nyamsari DG, Yalcin MG (2019) Statistical evaluation of the geochemical content of beach sand along the Sarisu-Kemer coastline of Antalya, Turkey. AIP Publishing 2116(1):100005–100009. https://doi.org/10.1063/1.5114081

    Article  CAS  Google Scholar 

  32. Chandrasekaran A, Ravisankar R, Senthilkumar G, Thillaivelavan K, Dhinakaran B, Vijayagopal P, Venkatraman B (2014) Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egypt J Basic Appl Sci 1(1):38–48. https://doi.org/10.1016/j.ejbas.2014.02.001

    Article  Google Scholar 

  33. Aydin B, Yalcin F, Ozer O, Yalcin MG (2020) Regression analysis and statistical examination of Knoop hardness on abrasion resistance in Lyca beige marbles. Filomat 34(2):609–614. https://doi.org/10.2298/FIL2002609A

    Article  Google Scholar 

  34. Yalcin F, Mert M (2019) Determination of the effects of spatial distribution of hotel accommodation prices in Kemer regıon. International symposium on advanced engineering technologies, Kahramanmaras, Turkey, 2–4 May, 1506–1511. http://isadet.com/international-symposium-on-advanced-engineering-technologies-isadet

  35. Yalcin F, Unal S, Yalcin MG, Akturk O, Ocak SB, Ozmen SF (2020) Investigation of the effect of hydrothermal waters on radionuclide activity concentrations in natural marble with multivariate statistical analysis. Symmetry 12(8):1–21. https://doi.org/10.3390/sym12081219

    Article  CAS  Google Scholar 

  36. Alashrah S, El-Taher A (2018) Assessing exposure hazards and metal analysis resulting from bauxite samples collected from a Saudi Arabian mine. Pol J Environ Stud 27(3):959–966. https://doi.org/10.15244/pjoes/76177

  37. Papatheodorou G, Papaefthymiou H, Maratou A, Ferentinos G (2005) Natural radionuclides in bauxitic tailings (red-mud) in the Gulf of Corinth, Greece. Radioprotection 40(1):549–555. https://doi.org/10.1051/radiopro:2005s1-080

    Article  Google Scholar 

  38. Somlai J, Jobbagy V, Kovacs J, Tarján S, Kovács T (2008) Radiological aspects of the usability of red mud as building material additive. J Hazard Mater 150(3):541–545. https://doi.org/10.1016/j.jhazmat.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Righi S, Guerra R, Jeyapandian M, Verita S, Albertazzi A (2009) Natural radioactivity in Italian ceramic tiles. Radioprotection 44(5):413–419. https://doi.org/10.1051/radiopro/20095078

    Article  Google Scholar 

  40. Abbady AG, El-Arabi AM (2006) Naturally occurring radioactive material from the aluminium industry—a case study: the Egyptian Aluminium Company, Nag Hammady. Egypt J Radiol Prot 26(4):415–422. https://doi.org/10.1088/0952-4746/26/4/006

    Article  CAS  PubMed  Google Scholar 

  41. Cuccia V, de Oliveira AH, Rocha Z (2011) Radionuclides in Bayer process residues: previous analysis for radiological protection. In: International nuclear Atlantic conference INAC, IAEA, 24. https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/107/42107569.pdf

  42. Karagiannidi T, Papaefthymiou H, Papatheodorou G (2009) Radioactive impact of a bauxite beneficiation plant in the Itea Gulf (Gulf of Corinth, Greece). J Radioanal Nucl Chem 279(3):923–934. https://doi.org/10.1007/s10967-008-7412-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this research was provided by the Scientific Research Project Coordination Division (BAP, FKA-2019-4636) of the Akdeniz University in Antalya. We thank the Scientific Research Projects Coordination Division of the Akdeniz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Gurhan Yalcin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer Atakoglu, O., Yalcin, M.G. & Ozmen, S.F. Determination of radiological hazard parameters and radioactivity concentrations in bauxite samples: the case of the Sutlegen Mine Region (Antalya, Turkey). J Radioanal Nucl Chem 329, 701–715 (2021). https://doi.org/10.1007/s10967-021-07826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07826-5

Keywords

Navigation