Skip to main content
Log in

Preparation of various sorbents from agro waste to remove some radionuclides and organic species from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Delonix regia pods have been used to produce high-efficiency and low-cost activated carbons using different activation methods. The ability of these prepared sorbents to remove cations [137Cs, 85Sr, La(III), Eu(III), Co(II), U(VI)] and anions [75Se, Cr(VI), Mo(VI)] was evaluated in mono-component systems and the sorbents number 11, 13, 25, and 35 showed high removal efficiency. These sorbents also show the high ability to remove organic pollutants such as methylene blue and phenol. This study highlighted the extensive applicability of these low-cost sorbents in the sequestration of anionic and cationic radionuclides from real radioactive wastewaters and different environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yakout SM, Hassan HS (2014) Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions. J Mol 19(7):9160–9172. https://doi.org/10.3390/molecules19079160

    Article  CAS  Google Scholar 

  2. Hamed MM, Hilal MA, Borai EH (2016) Chemical distribution of hazardous natural radionuclides during monazite mineral processing. J Environ Radioact 162–163:166–171. https://doi.org/10.1016/j.jenvrad.2016.05.028

    Article  CAS  PubMed  Google Scholar 

  3. El-Sayed AA, Hamed MM, El-Reefy SA (2010) Determination of micro amounts of zirconium in mixed aqueous organic medium by normal and first derivative spectrophotometry. J Anal Chem 65:1113–1117. https://doi.org/10.1134/S1061934810110043

    Article  CAS  Google Scholar 

  4. Gad HMH, Hamed MM, Abo Eldahab HMM, Moustafa ME, El-Reefy SA (2017) Radiation-induced grafting copolymerization of resin onto the surface of silica extracted from rice husk ash for adsorption of gadolinium. J Mol Liq 231:45–55. https://doi.org/10.1016/j.molliq.2017.01.088

    Article  CAS  Google Scholar 

  5. Hamed MM (2014) Sorbent extraction behavior of a nonionic surfactant, Triton X-100, onto commercial charcoal from low level radioactive waste. J Radioannal Nucl Chem 302:303–313

    Article  CAS  Google Scholar 

  6. Tiryaki B, Yagmur E, Banford A, Aktas Z (2014) Comparison of activated carbon produced from natural of biomass and equivalent chemical composition. J Anal Appl Pyrol 105:276–283. https://doi.org/10.1016/j.jaap.2013.11.014

    Article  CAS  Google Scholar 

  7. Yakout SM, Hamed MM, Hassan HS (2012) Solid phase extraction of nitrate and nitrite anions using naturallyand available sorbent. J Radioannal Nucl Chem 295:697–708. https://doi.org/10.1007/s10967-012-1896-6

    Article  CAS  Google Scholar 

  8. El-Sayed AA, Hamed MM, Hmmad HA, El-Reefy SA (2007) Collection/concentration of trace uranium for spectrophotometric detection using activated carbon and first-derivative spectrophotometry. Radiochim Acta 95:43–48. https://doi.org/10.1524/ract.2007.95.1.43

    Article  CAS  Google Scholar 

  9. Tan IAW, Ahamad AL, Hameed BH (2008) Adsorption of basic due on high surface area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154(1–3):337–346. https://doi.org/10.1016/j.jhazmat.2007.10.031

    Article  CAS  PubMed  Google Scholar 

  10. Zhao XT, Zeng T, Hu ZJ, Gao HW, Zou CY (2012) Modeling and mechanism of the adsorption of proton onto natural bamboo sawdust. Carbohydr Polym 87(2):1199–1205. https://doi.org/10.1016/j.carbpol.2011.08.098

    Article  CAS  Google Scholar 

  11. Rizk HE, Hamed MM, Ahmed IM (2018) Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent. J Mol Liq 249:361–370. https://doi.org/10.1016/j.molliq.2017.11.049

    Article  CAS  Google Scholar 

  12. Zhao XT, Zeng T, Li XY, Hu ZJ, Gao HW, Xie Z (2012) Modeling and mechanism of the adsorption of copper ion onto natural bamboo sawdust. Carbohydr Polym 89(1):185–192. https://doi.org/10.1016/j.carbpol.2012.02.069

    Article  CAS  PubMed  Google Scholar 

  13. Angelina M, Thanga A, Rajagopal K (2015) Fluoride removal study using pyrolyzed Delonixregia pod, an unconventional adsorbent. Int J Environ Sci Technol 12:223–236. https://doi.org/10.1007/s13762-013-0485-8

    Article  CAS  Google Scholar 

  14. Hosain L (2011) Ph.D. thesis, Ain Shams University, Cairo, Egypt

  15. Mckay G (1996) Use of adsorbent for the removal of pollutants from wastewaters. CRC Press, New York

    Google Scholar 

  16. Yakout SM (2006) Treatment of waste effluents using active carbon prepared from Agro-residues. Ph.D. thesis, Ain Shams University, Egypt

  17. Itodo AU, Abdulrahman FW, Hassan LG, Maigandi SA, Itodo HU (2010) Application of methylene blue and iodine adsorption in the measurement of specific surface area by four acid and salt treated activated carbons. J New York Sci 3(5):25–33

    Google Scholar 

  18. Bouchelta C, Medjram MS, Bertrand O, Bellat JP (2008) Preparation and characterization of activated carbon from date stones by physical activation with steam. J Anal Appl Pyrolysis 82:70–77. https://doi.org/10.1016/j.jaap.2007.12.009

    Article  CAS  Google Scholar 

  19. Byamba-Ochir N, Shim WG, Balathanigaimani M, Moon H (2016) Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation. J Appl Surf Sci 379:331–337. https://doi.org/10.1016/j.apsusc.2016.04.082

    Article  CAS  Google Scholar 

  20. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  CAS  Google Scholar 

  21. Yahya MA, Al-Qodah Z, Ngah CZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051

    Article  CAS  Google Scholar 

  22. Njoku V, Foo K, Asif M, Hameed B (2014) Preparation of activated carbons from rambutan (Nepheliumlappaceum) peel by microwave-induced KOH activation for acid yellow17dye adsorption. J Chem Eng 250:198–204. https://doi.org/10.1016/j.cej.2014.03.115

    Article  CAS  Google Scholar 

  23. Samsuri A, Sadegh-Zadeh F, Seh-Bardan B (2014) Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int J Environ Sci Technol 11:967–976. https://doi.org/10.1007/s13762-013-0291-3

    Article  CAS  Google Scholar 

  24. Gratuito MKB, Panyathanmaporn T, Chumnanklang RA et al (2008) Production of activated carbon from coconut shell: optimization using response surface methodology. Bioresour Technol 99:4887–4895. https://doi.org/10.1016/j.biortech.2007.09.042

    Article  CAS  PubMed  Google Scholar 

  25. Cui X, Jia F, Chen Y, Gan J (2011) Influence of single-walled carbon nanotubes on microbial availability of phenanthrene in sediment. Ecotoxicology 20:1277–1285. https://doi.org/10.1007/s10646-011-0684-3

    Article  CAS  PubMed  Google Scholar 

  26. Wang B, Zhu C, Zhang Z et al (2016) Facile, low-cost, and sustainable preparation of hierarchical porous carbons from ion exchange resin: an improved potassium activation strategy. J Fuel 179:274–280. https://doi.org/10.1016/j.fuel.2016.03.088

    Article  CAS  Google Scholar 

  27. Rambabu N, Rao B, Surisetty V et al (2015) Production, characterization, and evaluation of activated carbons from de-oiled canolameal for environmental applications. Ind Crops Prod 65:572–581. https://doi.org/10.1016/j.indcrop.2014.09.046

    Article  CAS  Google Scholar 

  28. Hassler JW (1963) Active carbon. Chemical Publishing Company, New York

    Google Scholar 

  29. Fu K, Yue Q, Gao B, Wang Y, Li Q (2017) Activated carbon from tomato stem by chemical activation with FeCl2. Colloids Surf A Physicochem Eng Asp 529:842–849. https://doi.org/10.1016/j.colsurfa.2017.06.064

    Article  CAS  Google Scholar 

  30. Xu Z, Sun Z, Zhou Y, Chen W, Zhang T, Huang Y, Zhang D (2019) Insights into the pyrolysis behavior and adsorption properties of activated carbon from waste cotton textiles by FeCl3-activation. Colloids Surf A Physicochem Eng Asp 582:123934. https://doi.org/10.1016/j.colsurfa.2019.123934

    Article  CAS  Google Scholar 

  31. Cazetta AL, Pezoti O, Bedin KC, Silva TL, Paesano Junior A, Asefa T, Almeida VC (2016) Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustain Chem Eng 4:1058–1068. https://doi.org/10.1021/acssuschemeng.5b01141

    Article  CAS  Google Scholar 

  32. Deng H, Zhang G, Xu X, Tao G, Dai J (2010) Optimization of preparation of activated carbon from cotton satalks by microwave assisted phosphoric acid-chemical activation. J Hazard Mater 182:217–224. https://doi.org/10.1016/j.jhazmat.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Zhao Y, Ma S, Zhu B, Zhang J, Zheng C (2016) Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ Sci Technol 50:12040–12047. https://doi.org/10.1021/acs.est.6b03743

    Article  CAS  PubMed  Google Scholar 

  34. Ömer S, Cafer S (2013) Preparation and characterization of activated carbon from acorn shell by physical activation with H2O–CO2 in two-step pretreatment. Biores Technol 136:163–168. https://doi.org/10.1016/j.biortech.2013.02.074

    Article  CAS  Google Scholar 

  35. Jin Z, Zhao G (2014) Porosity evolution of activated carbon fiber prepared from liquefied wood. Part II: water steam activation from 850 to 950°C. BioResources 9(4):6831–6840. https://doi.org/10.15376/biores.9.2.2237-2247

    Article  Google Scholar 

  36. Lorenc-Grabowska E, Diez MA, Gryglewicz G (2016) Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons. J Colloid Interface Sci 469:205–212. https://doi.org/10.1016/j.jcis.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  37. Gokce Y, Aktas Z (2014) Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Appl Surf Sci 313:352–359. https://doi.org/10.1016/j.apsusc.2014.05.214

    Article  CAS  Google Scholar 

  38. Hamed MM, Holiel M, El-Aryan YF (2017) Removal of selenium and iodine radionuclides from waste solutions using synthetic inorganic ion exchanger. J Mol Liq 242:722–731. https://doi.org/10.1016/j.molliq.2017.07.035

    Article  CAS  Google Scholar 

  39. Rizk SE, Hamed MM (2015) Batch sorption of iron complex dye, naphthol green B, from wastewater oncharcoal, kaolinite, and tafla. Desalin Water Treat 56:1536–1546. https://doi.org/10.1080/19443994.2014.954004

    Article  CAS  Google Scholar 

  40. Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioannal Nucl Chem 297:9–18. https://doi.org/10.1007/s10967-012-2305-x

    Article  CAS  Google Scholar 

  41. Khandaker S, KubaT KamidaS, Uchikawa Y (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J Environ Chem Eng 5:1456–1464. https://doi.org/10.1016/j.jece.2017.02.014

    Article  CAS  Google Scholar 

  42. Orhan Y, Buyukgungur H (1993) The removal of heavy metals by using agricultural wastes. Water Sci Technol 28:247–255. https://doi.org/10.2166/wst.1993.0114

    Article  CAS  Google Scholar 

  43. Rovira M, Giménez J, Martínez M, Martínez-Lladó X, de Pablo J, Martí V (2008) Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J Hazard Mater 150:279–284. https://doi.org/10.1016/j.jhazmat.2007.04.098

    Article  CAS  PubMed  Google Scholar 

  44. Mary Gladis J, Prasada Rao T (2002) Anal Lett 35:501

    Article  Google Scholar 

  45. Choi JH, Kim SD, Kwon YJ, Kim WJ (2006) Microporous Mesoporous Mater 96:157–167

    Article  CAS  Google Scholar 

  46. Sepehriana H, Cheraghalib R, Rezaeib P, Abdi HA (2011) Int J Ind Chem 2(4):235–241

    Google Scholar 

  47. Namasivayam C, Sangeetha D (2006) Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. J Hazard Mater B 135:449–452. https://doi.org/10.1016/j.jhazmat.2005.11.066

    Article  CAS  Google Scholar 

  48. Holiel M, Hamed MM, Ismail ZH (2016) Removal of 134Cs and 152+154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochim Acta 104:399–413. https://doi.org/10.1515/ract-2015-2514

    Article  CAS  Google Scholar 

  49. Hamed MM, Attallah MF, Metwally SS (2014) Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene. Radiochim Acta 102:1017–1024. https://doi.org/10.1515/ract-2013-2200

    Article  CAS  Google Scholar 

  50. Ahmed IM, Aglan RF, Hamed MM (2017) Removal of Arsenazo-III and Thorin from radioactive waste solutions by adsorption onto low-cost adsorbent. J Radioannal Nucl Chem 314:2253–2262. https://doi.org/10.1007/s10967-019-06669-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. S. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgazzar, A.H., Ali, M.M.S., El-Sayed, A.A. et al. Preparation of various sorbents from agro waste to remove some radionuclides and organic species from aqueous solutions. J Radioanal Nucl Chem 326, 1733–1748 (2020). https://doi.org/10.1007/s10967-020-07476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07476-z

Keywords

Navigation