Skip to main content
Log in

Design of docetaxel-loaded polymeric nanoparticles: characterization, radiolabeling with 99mTc and in vitro evaluation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This research aims to develop a polymeric drug delivery system for docetaxel (DTX) and to investigate its radiotracer potential by in vitro. DTX loaded Poly(lactic acid)/Poly(ethylene glycol) diblock copolymer (PLA–PEG) was synthesized and radiolabeled with technetium-99m tricarbonyl core. PLA–PEG–DTX nanoparticles had a particle size and zeta potential 120 ± 7.3 nm and − 24.66 ± 1.5 mV respectively, which was further supported by SEM image. The radiolabeling efficiency of 99mTc(CO)3-PLA–PEG–DTX was found to be 90 ± 3.51%,. In vitro study was carried out on cancer cell lines (MCF7, MDA-MB-231) to examine the biological behavior of docetaxel loaded PLA–PEG nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578. https://doi.org/10.1016/j.msec.2015.11.067

    Article  CAS  Google Scholar 

  2. Ramanlal Chaudhari K, Kumar A, Megraj Khandelwal VK, Ukawala M, Manjappa AS, Mishra AK, Monkkonen J, Ramachandra RS, Murthy (2012) Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J Control Release 158:470–478. https://doi.org/10.1016/j.jconrel.2011.11.020

    Article  CAS  PubMed  Google Scholar 

  3. Huang J, Zhang H, Yu Y, Chen Y, Wang D, Zhang G, Zhou G, Liu J, Sun Z, Sun D, Lu Y, Zhong Y (2014) Biodegradable self-assembled nanoparticles of poly (d,l-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer. Biomaterials 35:550–566. doi:https://doi.org/10.1016/j.biomaterials.2013.09.089

    Article  CAS  PubMed  Google Scholar 

  4. Pradhan R, Poudel BK, Ramasamy T, Choi H-G, Yong CS, Kim JO (2013) Docetaxel-loaded polylactic acid-co-glycolic acid nanoparticles: formulation, physicochemical characterization and cytotoxicity studies. J Nanosci Nanotechnol 13:5948–5956. https://doi.org/10.1166/jnn.2013.7735

    Article  CAS  PubMed  Google Scholar 

  5. Rafiei P, Haddadi A (2017) Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomed 12:935–947

    Article  CAS  Google Scholar 

  6. Karlsson J, Vaughan HJ, Green JJ (2018) Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Ann Rev Chem Biomol Eng 9:1–23

    Article  Google Scholar 

  7. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  Google Scholar 

  8. Afsharzadeh M, Ramezani M (2019) PEG-PLA nanoparticles decorated with small: molecule PSMA ligand for targeted delivery of galbanic acid and docetaxel to prostate cancer cells. J Cell Physiol. https://doi.org/10.1002/jcp.29339

    Article  PubMed  Google Scholar 

  9. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9. https://doi.org/10.1016/j.ejpb.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114. doi:https://doi.org/10.1016/j.addr.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  11. Ucar E, Teksoz S, Ichedef C, Kilcar AY, Medine EI, Ari K, Parlak Y, Sayit Bilgin BE, Unak P (2017) Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system. Appl Radiat Isot 119:72–79. doi:https://doi.org/10.1016/j.apradiso.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  12. Mandiwana V, Kalombo L, Grobler A, Zeevaart JR (2018) 99 m Tc-MDP as an imaging tool to evaluate the in vivo biodistribution of solid lipid nanoparticles. Appl Radiat Isot 141:51–56. https://doi.org/10.1016/j.apradiso.2018.08.015

    Article  CAS  PubMed  Google Scholar 

  13. Nicolas S, Bolzinger MA, Jordheim LP, Chevalier Y, Fessi H, Almouazen E (2018) Polymeric nanocapsules as drug carriers for sustained anticancer activity of calcitriol in breast cancer cells. Int J Pharm 550(1–2):170–179. https://doi.org/10.1016/j.ijpharm.2018.08.022

    Article  CAS  PubMed  Google Scholar 

  14. Giacalone G, Tsapis N, Mousnier L, Chacun H, Fattal E (2018) PLA–PEG nanoparticles improve the anti-inflammatory effect of rosiglitazone on macrophages by enhancing drug uptake compared to free rosiglitazone. Materials 11(10):1845. https://doi.org/10.3390/ma11101845

    Article  CAS  PubMed Central  Google Scholar 

  15. El-naggar ME, Al-jou F, Anwar M, Attia MF, El-bana MA (2019) Curcumin-loaded PLA–PEG copolymer nanoparticles for treatment of liver in fl ammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 177(2019):389–398. https://doi.org/10.1016/j.colsurfb.2019.02.024

    Article  CAS  PubMed  Google Scholar 

  16. Içhedef Ç, Teksöz S, Ünak P, Medine EI, Ertay T, Bekiş R (2012) Preparation and characterization of radiolabeled magnetic nanoparticles as an imaging agent. J Nanoparticle Res. https://doi.org/10.1007/s11051-012-1077-0

    Article  Google Scholar 

  17. Aydın B, Uçar E, Tekin V, İçhedef Ç, Teksöz S (2020) Biocompatible delivery system for metformin: characterization, radiolabeling and in vitro studies. Anti Cancer Agents Med Chem. https://doi.org/10.2174/1871520620666200423081235

    Article  Google Scholar 

  18. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA (1998) A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3] + from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand [8]. J Am Chem Soc 120:7987–7988. https://doi.org/10.1021/ja980745t

    Article  CAS  Google Scholar 

  19. Karve S, Werner ME, Cummings ND, Sukumar R, Wang EC, Zhang Y-A, Wang AZ (2011) Formulation of diblock polymeric nanoparticles through nanoprecipitation technique. J Vis Exp. https://doi.org/10.3791/3398

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hami Z, Amini M, Ghazi-Khansari M, Rezayat SM, Gilani K (2014) Doxorubicin-conjugated PLA–PEG-Folate based polymeric micelle for tumor-targeted delivery: Synthesis and in vitro evaluation  DARU J Pharm Sci 22:1–7. https://doi.org/10.1186/2008-2231-22-30

    Article  CAS  Google Scholar 

  21. Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109. doi:https://doi.org/10.1016/j.jconrel.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  22. Shah R, Eldridge D, Palombo E, Harding I (2014) Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J Phys Sci 25:59–75

    CAS  Google Scholar 

  23. Gu G, Hu Q, Feng X, Gao X, Menglin J, Kang T, Jiang D, Song Q, Chen H, Chen J (2014) PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials 35:8215–8226. doi:https://doi.org/10.1016/j.biomaterials.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  24. Vila A, Sánchez A, Évora C, Soriano I, McCallion O, Alonso MJ (2005) PLA–PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm 292:43–52. https://doi.org/10.1016/j.ijpharm.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  25. Jin H, Li S, Hu D, Zhao Y (2012) Preparation of PLA–PEG nanoparticles by the solution enhanced dispersion with enhanced mass transfer using ultrasound in supercritical CO2. Powder Technol 227:17–23. https://doi.org/10.1016/j.powtec.2012.04.050

    Article  CAS  Google Scholar 

  26. Farokhzad OC, Tran T-NT, LaVan DA, Langer R, Jon S, Khademhosseini A (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672. https://doi.org/10.1158/0008-5472.CAN-04-2550

    Article  CAS  PubMed  Google Scholar 

  27. Rao BM, Chakraborty A, Srinivasu MK, Devi ML, Kumar PR, Chandrasekhar KB, Srinivasan AK, Prasad AS, Ramanatham J (2006) A stability-indicating HPLC assay method for docetaxel. J Pharm Biomed Anal 41:676–681. doi:https://doi.org/10.1016/j.jpba.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  28. Noori Koopaei M, Reza Khoshayand M, Hossein Mostafavi S, Amini M, Reza Khorramizadeh M, Jeddi Tehrani M, Atyabi F, Dinarvand R (2014) Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. Iran J Pharm Res 12:819–833

    Google Scholar 

  29. Şenocak K, Teksöz S, IÒ«hedef C, UÒ«ar E (2015) Synthesis and biological evaluation of bisphosphonate compound labeled with 99 m Tc(CO) 3+. Chem Biol Drug Des 85:369–376. https://doi.org/10.1111/cbdd.12401

    Article  CAS  PubMed  Google Scholar 

  30. Ameeduzzafar SS, Imam SN, Abbas Bukhari J, Ahmad A, Ali (2018) Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: in-vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol 108:650–659. https://doi.org/10.1016/j.ijbiomac.2017.11.170

    Article  CAS  PubMed  Google Scholar 

  31. Avcibasi U, Ediz M, Tu C, Aktas D (2021) Synthesis and biodistribution of novel magnetic-poly (HEMA-APH) nanopolymer radiolabeled with iodine-131 and investigation its fate in vivo for cancer therapy. J Nanopart Res. https://doi.org/10.1007/s11051-013-2021-7

    Article  Google Scholar 

  32. Senbanjo LT, Chellaiah MA (2017) CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2017.00018

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ph.D. Eser Uçar for scientific english editing of the manuscript. MCF7 and MDA-MB-231 cells were obtained from Ege University, Faculty of Science, Department of Biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuz Çetin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetin, O., İçhedef, Ç., Aydın, B. et al. Design of docetaxel-loaded polymeric nanoparticles: characterization, radiolabeling with 99mTc and in vitro evaluation. J Radioanal Nucl Chem 326, 1639–1652 (2020). https://doi.org/10.1007/s10967-020-07454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07454-5

Keywords

Navigation