Skip to main content
Log in

A perspective on PLGA encapsulated radio agents

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Today, it is well known that radioactive nano systems, particularly radioactive nano particles (NPs) based on polymeric NPs possess great advantages on nuclear imaging and/or radiotherapy. Poly(lactic-co-glycolic) acid (PLGA) is one of the biomedical polymers involved in preclinical and clinical studies in this area. In this review, PLGA encapsulated compounds based on plant and synthetic and their Technetium-99m (99mTc) and Iodine-131 (131I) labeled derivatives were revised in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. El-Say KM, El-Sawy H (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–691

    Article  CAS  PubMed  Google Scholar 

  2. Ge J, Zhang Q, Zeng J et al (2020) Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials 228:119553

    Article  CAS  PubMed  Google Scholar 

  3. Wu S, Helal-Neto E, dos Santos Matos AP, Jafari A, Kozempel J, de Albuquerque Silva YJ, Serrano-Larrea C, Alves Junior S, Ricci-Junior E, Santos-Oliveira FA, Santos-Oliveira R (2020) Radioactive polymeric nanoparticles for biomedical application. Drug Deliv 27(1):1544–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shen X, Li T, Yi Feng XX, Chen Z, Yang H, Wu C, Deng S, Liu Y (2020) PLGA-based drug delivery systems for remotely triggered cancer therapeutic and diagnostic applications. Front Bioeng Biotechnol 8(381):1–19

    Google Scholar 

  5. Bhatnagar P, Pant AB, Shukla Y, Panda A, Gupta KC (2016) Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich’s Ascites Carcinoma. Eur J Pharm Biopharm 105(1):176–192

    Article  CAS  PubMed  Google Scholar 

  6. Yang H, Shen X, Yan J, Xie XX, Chen ZY, Li TT et al (2018) Charge-reversal-functionalized PLGA nanobubbles as theranostic agents for ultrasonic-imaging-guided combination therapy. Biomater Sci 6:2426–2439

    Article  CAS  PubMed  Google Scholar 

  7. Shen X, Li T, Chen Z, Xie X, Zhang H, Feng Y et al (2019) NIR-lighttriggered anticancer strategy for dual-modality imaging-guided combination therapy via a bioinspired hybrid PLGA nanoplatform. Mol Pharm 16:1367–1384

    Article  CAS  PubMed  Google Scholar 

  8. Darwish WMA, Bayoumi NA (2020) Gold nanorod–loaded (PLGA-PEG) nanocapsules as near-infrared controlled release model of anticancer therapeutics. Lasers Med Sci 35:1729–1740

    Article  PubMed  Google Scholar 

  9. Biber Muftuler FZ, Yurt Kilcar A, Unak P (2015) A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals. J Radioanal Nucl Chem 306:1–9

    Article  CAS  Google Scholar 

  10. Kovacs L, Tassano M, Cabrera M et al (2014) Labeling polyamidoamine (PAMAM) dendrimers with Technetium-99m via hydrazinonicotinamide (HYNIC). Curr Radiopharm 7:115–122

    Article  CAS  PubMed  Google Scholar 

  11. Mushtaq S, Bibi A, Eun Park J, Jeon J (2021) Recent progress in Technetium-99m-labeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials 11(3022):1–28

    Google Scholar 

  12. Li Z, Wang B, Zhang Z, Wang B, Xu Q, Mao W, Tian J, Yang K, Wang F (2018) Radionuclide imaging-guided chemo-radioisotope synergistic therapy using a 131I-labeled polydopamine multifunctional nanocarrier. Mol Ther 26(5):1385–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yurt Kilcar A, Tekin V, Biber Muftuler FZ, Medine EI (2016) 99mTc labeled plumbagin: estrogen receptor dependent examination against breast cancer cells and comparison with PLGA encapsulated form. J Radioanal Nucl Chem 308:13–22

    Article  CAS  Google Scholar 

  14. Yıldız G, Yurt Kılçar A, Medine EI, Tekin V, Kozgus Guldu O, Biber Muftuler FZ (2017) PLGA encapsulation and radioiodination of Indole-3-Carbınol: investigation of anticancerogenic effects against MCF7, CACO2 and PC3 cells by in vıtro assays. Radioanal Nucl Chem 311:1043–1052

    Article  Google Scholar 

  15. Kayas C, Yurt Kilcar A, Karatay KB, Ichedef C, Biber Muftuler FZ (2020) PLGA encapsulation and radioiodination of Baicalein as a potential theranostic agent for neuro-oncology and neurodegeneration. 4th Nuclear Technologies for Health Symposium (NTHS2020), poster presentation, Nantes France, 13–14 February 2020

  16. Uygur E, Karatay KB, Derviş E, Kayaş C, Biber Müftüler FZ (2021) The synthesis of encapsulated radiolabeled compounds to be used for diagnosis of Parkinson’s disease. Nineth International Conference on Radiation in Various Fields of Research (RAD 2021), 14–18 June, 2021, p 89

  17. Ghasemi F, Shafee M, Banikazemi Z et al (2019) Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 215:1–6

    Article  Google Scholar 

  18. Zhang H, Zhang Y, Chen Y et al (2018) Glutathione-responsive self-delivery nanoparticles assembled by curcumin dimer for enhanced intracellular drug delivery. Int J Pharm 549:230–238

    Article  CAS  PubMed  Google Scholar 

  19. Mérian J, Gravier J, Navarro F, Texier I (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17:5564–5591

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gokulu SG, Yurt Kilcar A, Bilgi A, Karatay KB, Yildirim N, Kayas C, Biber Muftuler FZ, Terek MC (2021) Investigation of nanoformulation and incorporation potential of radiolabeled curcumin using HeLa and MDAH 2774 cells. J Radioanal Nucl Chem 327:299–305

    Article  CAS  Google Scholar 

  21. Kazi J, Sen R, Ganguly S, Jha T, Ganguly S, Debnath MC (2020) Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. Int J Pharm 585:119449

    Article  CAS  PubMed  Google Scholar 

  22. Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A (2005) Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Release 108(193–214):5

    Google Scholar 

  23. Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV (2010) Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’ s disease. WIREs Nanomed Nanobiotechnol 2(3):35–47

    Article  CAS  Google Scholar 

  24. Yurt Kilcar A, Biber Muftuler FZ, Medine EI (2016) PLGA encapsulation effect on Bioquin-HMPAO: radiolabeling and in vitro behaviour on brain and lung cancer cells. Radioanal Nucl Chem 310(1):155–164

    Article  CAS  Google Scholar 

  25. Kaur A, Nigam K, Tyagi A et al (2022) A preliminary pharmacodynamic study for the management of alzheimer’s disease using memantine-loaded PLGA nanoparticles. AAPS PharmSciTech 23:298

    Article  CAS  PubMed  Google Scholar 

  26. Nigam K, Kaur A, Tyagi A, Manda K, Gabrani R, Dang S (2019a) Baclofen-loaded poly(D, L-Lactide-Co-Glycolic Acid) nanoparticles for neuropathic pain management: ın vitro and ın vivo evaluation. Rejuvenation Res 22(3):235–245

    Article  CAS  PubMed  Google Scholar 

  27. Nigam K, Kaur A, Tyagi A, Nematullah M, Khan F, Gabrani R, Dang S (2019b) Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv Transl Res 9:879–890

    Article  CAS  PubMed  Google Scholar 

  28. Varani M, Campagna G, Bentivoglio V, Serafinelli M, Martini ML, Galli F, Signore A (2021) Synthesis and biodistribution of 99mTc-labeled PLGA nanoparticles by microfluidic technique. Pharmaceutics 13:1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Snehalatha M, Venugopal K, Saha RN, Babbar AK, Sharma RK (2008) Etoposide loaded PLGA and PCL nanoparticles II: biodistribution and pharmacokinetics after radiolabeling with Tc-99m. Drug Deliv 15:277–287

    Article  CAS  PubMed  Google Scholar 

  30. Carmo FSD, Ricci-Junior E, Cerqueira-Coutinho C et al (2017) Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by singlephoton emission computed tomography in inducted animals: Initial considerations. Int J Nanomedicine 12:53–60

    Article  Google Scholar 

  31. He Z, Zhang X, Huang J, Wu Y, Huang X, Chen J, Xia J, Jiang H, Ma J, Wu j, (2016) Immune activity and biodistribution of polypeptide K237 and folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles radiolabeled with 99mTc. Oncotarget 7:76635–76646

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ekinci M, Öztürk AA, Santos-Oliveira R, İlem-Özdemir D (2022) The use of Lamivudine-loaded PLGA nanoparticles in the diagnosis of lung cancer: preparation, characterization, radiolabeling with 99mTc and cell binding. J Drug Deliv Sci Technol 69(3):103139

    Article  CAS  Google Scholar 

  33. Bilgi A, Yurt Kilcar A, Gokulu SG, Kayas C, Yildirim N, Karatay KB, Akman L, Biber Muftuler FZ, Ozsaran AA (2022) mTOR inhibitors from a diagnostic perspective: radiolabeling of everolimus and its nanoformulation, in vitro incorporation assays against cervix and ovarian cancer cells. J Radioanal Nucl Chem 331:171–178

    Article  CAS  Google Scholar 

  34. Akman L, Biber Muftuler FZ, Bilgi A, Yurt Kilcar A, Gokulu SG, Medine EI, Terek MC (2016) Synthesis of a theranostic agent: radioiodinated PEGylated PLGA-indocyanine capsules and in vitro determination of their bioaffinity on ovarian, cervical and breast cancer cells. J Radioanal Nucl Chem 302(2):659–670

    Article  Google Scholar 

  35. Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS (2012) Gold nanomaterials conjugated with indocyanine green for dualmodality photodynamic and photothermal therapy. Biomaterials 33:3270–3278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilet Zumrut Biber Muftuler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biber Muftuler, F.Z. A perspective on PLGA encapsulated radio agents. J Radioanal Nucl Chem 332, 511–515 (2023). https://doi.org/10.1007/s10967-023-08798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08798-4

Keywords

Navigation