Skip to main content
Log in

Chemical durability studies on multi rare earths immobilized simulated oxysilicate apatite wasteforms CaLa3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O and Ca0.8Sr0.1Pb0.1La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Chemical durability behavior of simulated crystalline oxyapatite wasteforms CaLa3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O [WF-1] and Ca0.8Sr0.1Pb0.1La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O [WF-2] was studied. Soxhlet leach tests (MCC-5) were conducted and the leachates were analyzed by ICP-MS/OES techniques. The results indicate that the release of ions from the wasteform was found to be strongly dependent on chemical compositions, as WF-1 shows relatively more resistance towards leaching than parent and WF-2. The leachability of immobilized rare-earth ions in WF-1 and WF-2 was found to be negligible. The observed trend of leaching behaviour in all three systems is Si4+ > A2+ > RE3+. Further, the investigation on the mechanism of leaching suggested that the leaching process is predominantly governed by diffusion.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bruno J, Ewing RC (2006) Spent nuclear fuel. Elements 2:343–349

    CAS  Google Scholar 

  2. Choi JH, Cho IH, Eun HC, Park HS, Cho YZ, Lee KR, Park GI, Kim SH, Shin CH, Kim JK (2014) Fabrication and physical properties of lanthanide oxide glass wasteform for the immobilization of lanthanide oxide wastes generated from pyrochemical process. J Radioanal Nucl Chem 299:1731–1738

    CAS  Google Scholar 

  3. Campayo L, Le Gallet S, Perret D, Courtois E, Coumes CCD, Grin Y, Bernard F (2015) Relevance of the choice of spark plasma sintering parameters in obtaining a suitable microstructure for iodine-bearing apatite designed for the conditioning of I-129. J Nucl Mater 457:63–71

    CAS  Google Scholar 

  4. McMaster SA, Ram R, Faris N, Pownceby MI (2018) Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix—a review. J Hazard Mater 360:257–269

    CAS  PubMed  Google Scholar 

  5. Rahman ROA, Rakhimov RZ, Rakhimova NR, Ojovan MI (2014) Cementitious materials for nuclear waste immobilization. Wiley, New York

    Google Scholar 

  6. Apted MJ (1990) Radionuclide release from high-level nuclear-waste packages. J Radioanal Nucl Chem 142:321–330

    CAS  Google Scholar 

  7. Bradley DJ (1980) Basic research for evaluating nuclear waste form performance. Nucl Technol 51:111–122

    Google Scholar 

  8. Peters MT, Ewing RC (2006) A science-based approach to understanding waste form durability in open and closed nuclear fuel cycles. No. MOL–20060815.0149. Yucca Mountain Project

  9. Burakov BE, Anderson EB, Rovsha VS, Ushakov SV, Ewing RC, Lutze W, Weber WJ (1995) Synthesis of zircon for immobilization of actinides. Mater Res Soc Proc Libr Arch 412:33–40

    Google Scholar 

  10. Dacheux N, Clavier N, Podor R (2013) Monazite as a promising long-term radioactive waste matrix: benefits of high-structural flexibility and chemical durability. Am Miner 98:833–847

    CAS  Google Scholar 

  11. Shrivastava OP, Chourasia R (2008) Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba2+, Sn4+, Fe3+, Cr3+, Ni2+ and Si4+) from light water reactor fuel reprocessing plants. J Hazard Mater 153:285–292

    CAS  PubMed  Google Scholar 

  12. Cao C, Chong S, Thirion L, Mauro JC, McCloy JS, Goel A (2017) Wet chemical synthesis of apatite-based waste forms-A novel room temperature method for the immobilization of radioactive iodine. J Mater Chem A. 5:14331–14342

    CAS  Google Scholar 

  13. Sengupta P (2012) A review on immobilization of phosphate containing high level nuclear wastes within glass matrix—present status and future challenges. J Hazard Mater 235:17–28

    PubMed  Google Scholar 

  14. Bennet DG, Higgo JJW, Wickham SM (2001) Review of waste immobilisation matrices. Nirex Limited, Oxfordshire

    Google Scholar 

  15. Ewing RC, Lutze W, Weber WJ (1995) Zircon: a host-phase for the disposal of weapons plutonium. J Mate Res 10:243–246

    CAS  Google Scholar 

  16. Lan WANG, Xirui LU, Xiaoyan SHU, Yi DING, Facheng YI, Dengsheng MA, Yanlin WU (2017) Chemical stability of simulated waste forms Zr1–xNdxSiO4–x/2: influence of temperature, pH and their combined effects. J Rare Earths 35:709–715

    Google Scholar 

  17. Li S, Liu J, Yang X, Ding Y, Zhu L, Liu B, Zhang L, Luo S, Lei J, Zhu W, Duan T (2019) Effect of phase evolution and acidity on the chemical stability of Zr1–xNdxSiO4-x/2 ceramics. Ceram Int 45–3:3052–3058

    Google Scholar 

  18. Terra O, Dacheux N, Audubert F, Podor R (2006) Immobilization of tetravalent actinides in phosphate ceramics. J Nucl Mater 352:224–232

    CAS  Google Scholar 

  19. Lumpkin GR (2006) Ceramic waste forms for actinides. Elements. 2:365–372

    CAS  Google Scholar 

  20. Montel JM, Glorieux B, Seydoux-Guillaume AM, Wirth R (2006) Synthesis and sintering of a monazite-brabantite solid solution ceramic for nuclear waste storage. J Phys Chem Solids 67:2489–2500

    CAS  Google Scholar 

  21. Terra O, Clavier N, Dacheux N, Podor R (2003) Preparation and characterization of lanthanum-gadolinium monazites as ceramics for radioactive waste storage. New J Chem 27:957–967

    CAS  Google Scholar 

  22. Donald IW, Metcalfe BL, Taylor RJ (1997) Review The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32:5851–5887

    CAS  Google Scholar 

  23. Ojovan MI, Lee WE, Kalmykov SN (2019) An introduction to nuclear waste immobilization. Elsevier, Amsterdam

    Google Scholar 

  24. Trocellier P (2001) Chemical durability of high level nuclear waste forms. Ann Chim Sci des Mater 26:113–130

    CAS  Google Scholar 

  25. Hsieh YH, Humphry-Baker SA, Horlait D, Gregg DJ, Vance ER, Lee WE (2018) Durability of hot uniaxially pressed Synroc derivative wasteform for EURO-GANEX wastes. J Nucl Mater 509:43–53

    CAS  Google Scholar 

  26. Trocellier P, Delmas R (2001) Chemical durability of zircon. Nucl Instrum Methods Phys Res Sect B 181:408–412

    CAS  Google Scholar 

  27. Yi XIE, Long FAN, Xiaoyan SHU, Fangting CHI, Yi DING, Dengsheng MA, Xirui LU (2017) Chemical stability of Ce-doped zircon ceramics: influence of pH, temperature and their coupling effects. J Rare Earths 35:164–171

    Google Scholar 

  28. Teng Y, Zeng P, Huang Y, Wu L, Wang X (2015) Hot-pressing of monazite Ce0.5Pr0.5PO4 ceramic and its chemical durability. J Nucl Mater 465:482–487

    CAS  Google Scholar 

  29. Zhao X, Teng Y, Yang H, Huang Y, Ma J (2015) Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering. Ceram Int 41:11062–11068

    CAS  Google Scholar 

  30. Ishida M, Kikuchi K, Yanagi T, Terai R (1986) Leaching behavior of crystalline phosphate waste forms. Nucl Chem Waste Manag 6:127–131

    CAS  Google Scholar 

  31. Jantzen CM (2011) Development of glass matrices for high level radioactive wastes. In: Handbook of advanced radioactive waste conditioning technologies. Woodhead Publishing

  32. Hashimoto C, Nakayama S (2010) Immobilization of Cs and Sr to HZr2(PO4)3 using an autoclave. J Nucl Mater 396:197–201

    CAS  Google Scholar 

  33. Solomah AG, Richardson PG, Mcilwain AK (1987) Phase identification, microstructural characterization, phase microanalyses and leaching performance evaluation of SYNROC-FA crystalline ceramic waste form. J Nucl Mater 148:157–165

    CAS  Google Scholar 

  34. Murakami T, Banba T, Nakamura H (1986) Leaching of SYNROC-C: relation to microstructures. Nucl Technol 74:299–306

    CAS  Google Scholar 

  35. Ewing RC, Lutze W (1991) High-level nuclear waste immobilization with ceramics. Ceram Int 17:287–293

    CAS  Google Scholar 

  36. Hughes JM (2015) The many facets of apatite. Am Miner 100:1033–1039

    Google Scholar 

  37. Rakovan JF, Pasteris JD (2015) A technological gem: materials, medical, and environmental mineralogy of apatite. Elements 11:195–200

    CAS  Google Scholar 

  38. Clara M, Magalhães F, Williams PA (2007) Apatite group minerals: Solubility and environmental remediation. In: Thermodynamics, solubility and environmental issues. Elsevier, pp 327–340

  39. Henderson P (ed) (2013) Rare earth element geochemistry. Elsevier, Amsterdam

    Google Scholar 

  40. Harouiya N, Chaïrat C, Köhler SJ, Gout R, Oelkers EH (2007) The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50 C and pH from 1 to 6. Chem Geol 244:554–568

    CAS  Google Scholar 

  41. Chaïrat C, Schott J, Oelkers EH, Lartigue JE, Harouiya N (2007) Kinetics and mechanism of natural fluorapatite dissolution at 25 C and pH from 3 to 12. Geochim Cosmochim Acta 71:5901–5912

    Google Scholar 

  42. Rigali MJ, Brady PV, Moore RC (2016) Radionuclide removal by apatite. Am Miner 101:2611–2619

    Google Scholar 

  43. Maddrell ER, Abraitis PK (2003) A comparison of wasteforms and processes for the immobilisation of iodine-129. MRS Online Proceedings Library Archive. 807

  44. Suetsugu Y (2014) Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process. J Nucl Mater 454:223–229

    CAS  Google Scholar 

  45. Campayo L, Grandjean A, Coulon A, Delorme R, Vantelon D, Laurencin D (2011) Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine. J Mater Chem 21:17609–17611

    CAS  Google Scholar 

  46. Campayo L, Audubert F, Lartigue JE, Courtois-Manara E, Le Gallet S, Bernard F, Lemesle T, Mear FO, Montagne L, Coulon A, Laurencin D (2015) French studies on the development of potential conditioning matrices for iodine 129. MRS Online Proc Libr 1744:15–20

    Google Scholar 

  47. Guy C, Audubert F, Lartigue JE, Latrille C, Advocat T, Fillet C (2003) New conditionings for enhanced separated Long-lived radionuclides. C R Phys 3:827–837

    Google Scholar 

  48. Ravikumar R, Gopal B, Jena H (2018) Crystal chemical substitution at Ca and La Sites in CaLa4(SiO4)3O to design the composition Ca1−xMxLa4−xREx(SiO4)3O for nuclear waste immobilization and its influence on the thermal expansion behavior. Inorg Chem 57:6511–6520

    CAS  PubMed  Google Scholar 

  49. Peterson JA, Crum JV, Riley BJ, Asmussen RM, Neeway JJ (2018) Synthesis and characterization of oxyapatite [Ca2Nd8(SiO4)6O2] and mixed-alkaline-earth powellite [(Ca, Sr, Ba)MoO4] for a glass-ceramic waste form. J Nucl Mater 510:623–634

    CAS  Google Scholar 

  50. Kim M, Heo J (2015) Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing. J Nucl Mater 467:224–228

    CAS  Google Scholar 

  51. Dacheux N, Kerdaniel EDD, Clavier N, Podor R, Aupiais J, Szenknect S (2010) Kinetics of dissolution of thorium and uranium doped britholite ceramics. J Nucl Mater 404:33–43

    CAS  Google Scholar 

  52. Kumar SP, Buvaneswari G (2013) Synthesis of apatite phosphates containing Cs+, Sr2+ and RE3+ ions and chemical durability studies. Mater Res Bull 48:324–332

    CAS  Google Scholar 

  53. Kumar SP, Gopal B (2016) New rare earth langbeinite phosphosilicates KBaREEZrP2SiO12 (REE: la, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage. J Alloys Compd 657:422–429

    CAS  Google Scholar 

  54. Mimura H, Iijima K, Akiba K (1997) Leaching behavior and surface alteration of cesium aluminum silicate under static and dynamic conditions. J Nucl Sci Technol 34:269–276

    CAS  Google Scholar 

  55. Sugantha M, Kumar NRS, Varadaraju UV (1998) Synthesis and leachability studies of NZP and eulytine phases. Waste Manag 18:275–279

    CAS  Google Scholar 

  56. Cai X, Teng Y, Wu L, Zhang K, Huang Y (2016) The synthesis and chemical durability of Nd-doped single-phase zirconolite solid solutions. J Nucl Mater 479:455–460

    CAS  Google Scholar 

  57. Rafiuddin MR, Grosvenor AP (2018) An investigation of the chemical durability of hydrous and anhydrous rare-earth phosphates. J Nucl Mater 509:631–643

    CAS  Google Scholar 

  58. Kenna BT (1982) Analysis of long-term soxhlet tests. Nucl Chem Waste Manag 3:69–78

    CAS  Google Scholar 

  59. Njema H, Boughzala K, Boughzala H, Bouzouita K (2013) Structural analysis by Rietveld refinement of calcium and lanthanum phosphosilicate apatites. J Rare Earths 31:897–904

    CAS  Google Scholar 

  60. Carpéna J, Boyer L, Fialinc M, Kiénast JR, Lacout JL (2001) Ca2+, PO43− ⇌ Ln3+, SiO44− coupled substitution in the apatitic structure: stability of the mono-silicated fluor-britholite. C R Acad Sci IIA-Earth Planet Sci 333:373–379

    Google Scholar 

  61. Zhai D, Ning L, Huang Y, Liu G (2014) Ce−O covalence in silicate oxyapatites and its influence on luminescence dynamics. J Phys Chem C 118:16051–16059

    CAS  Google Scholar 

  62. Luo YR, Kerr JA (2012) Bond dissociation energies. In: CRC handbook of chemistry and physics, vol 89, p 89

  63. Cote P (1986) Contaminant leaching from cement based wasteforms under acidic conditions. Doctoral dissertation

  64. Zhao X, Teng Y, Wu L, Huang Y, Ma J, Wang G (2015) Chemical durability and leaching mechanism of Ce0.5Eu0.5PO4 ceramics: effects of temperature and pH values. J Nucl Mater 466:187–193

    CAS  Google Scholar 

  65. Plecas I, Dimovic S (2005) Immobilization of 137Cs and 60Co in concrete matrix. Part 2: mathematical modeling of transport phenomena. Ann Nucl Energy 32:1509–1515

    CAS  Google Scholar 

  66. Buvaneswari G, Varadaraju UV (2000) Low leachability phosphate lattices for fixation of select metal ions. Mater Res Bull 35:1313–1323

    CAS  Google Scholar 

  67. Harvey KB, Jensen CD (1982) An intercomparison of leach-testing methods and the effects of waste-form composition on test type and duration. Nucl Chem Waste Manag 3:43–50

    CAS  Google Scholar 

  68. Pearce EIF (1988) On the dissolution of hydroxyapatite in acid solutions. J Dent Res 67:1056–1058

    CAS  PubMed  Google Scholar 

  69. Barkatt A, Gibson BC, Macedo PB, Montrose CJ, Sousanpour W, Barkatt A, Boroomand M, Rogers V, Penafiel M (2017) Mechanisms of defense waste glass dissolution mechanisms of defense waste glass dissolution. Nucl Technol 73:140–164

    Google Scholar 

  70. Simmons JH, Barkatt A, Macedo PB (1982) Mechanisms that control aqueous leaching of nuclear waste glass. Nucl Technol 56:265–270

    CAS  Google Scholar 

  71. Chick LA, Pederson LR (1983) The relationship between reaction layer thickness and leach rate for nuclear waste glasses. MRS Online Proceedings Library Archive. 26

  72. Harvey KB (1995) Dissolution models for glassy waste forms (No. AECL-10738). Atomic Energy of Canada Ltd

Download references

Acknowledgements

The authors gratefully acknowledge the funding from UGC-DAE-CSR (CSR-KN/CRS-54/2013- 4/653) India and thank VIT, Vellore for providing all required facilities to carry out the experiments.

Funding

This study was funded by UGC-DAE-CSR (CSR-KN/CRS-54/2013- 4/653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buvaneswari Gopal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, R., Gopal, B., Sekar, J.K. et al. Chemical durability studies on multi rare earths immobilized simulated oxysilicate apatite wasteforms CaLa3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O and Ca0.8Sr0.1Pb0.1La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O. J Radioanal Nucl Chem 326, 1569–1578 (2020). https://doi.org/10.1007/s10967-020-07436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07436-7

Keywords

Navigation