Skip to main content
Log in

Investigation of radiolabelled chitosan nanoparticles bearing Cefpodoxime Proxetil, and in vitro antibacterial effect on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aims to investigate radiolabeled Cefpodoxime Proxetil loaded chitosan (CP–CS) nanoparticles as nuclear imaging infection agent to Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The encapsulation efficiency of Cefpodoxime Proxetil was found 82 ± 2%. CP and CP–CS nanoparticles were radiolabeled with Tc-99 m. The radiochemical purity of 99mTc–CP and 99mTc–CP–CS nanoparticles were determined by RTLC as 89 ± 3% and 94 ± 2% respectively. In vitro bindings of 99mTc–CP–CS nanoparticles to S. aureus and E. coli were found higher than 99mTc–CP bindings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114. https://doi.org/10.1016/j.addr.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  2. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198. https://doi.org/10.1021/cr940351u

    Article  CAS  PubMed  Google Scholar 

  3. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. https://doi.org/10.1016/j.jconrel.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Jung J, Zhao Y (2016) Preparation, characterization and evaluation of antibacterial activity of catechins and catechins–Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydr Polym 137:82–91. https://doi.org/10.1016/j.carbpol.2015.10.036

    Article  CAS  PubMed  Google Scholar 

  5. Borin MT (1991) A review of the pharmacokinetics of cefpodoxime proxetil. Drugs 42:13–21. https://doi.org/10.2165/00003495-199100423-00005

    Article  CAS  PubMed  Google Scholar 

  6. Löbenberg R, Amidon GL (2000) Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm 50:3–12. https://doi.org/10.1016/S0939-6411(00)00091-6

    Article  PubMed  Google Scholar 

  7. Sugimoto M, Okagaki T, Narisawa S et al (1998) Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-soluble polymer. Int J Pharm 160:11–19. https://doi.org/10.1016/S0378-5173(97)00293-7

    Article  CAS  Google Scholar 

  8. Patil SH, Talele GS (2014) Natural gum as mucoadhesive controlled release carriers: evaluation of Cefpodoxime Proxetil by D-Optimal design technique. Drug Deliv 21:118–129. https://doi.org/10.3109/10717544.2013.834416

    Article  CAS  PubMed  Google Scholar 

  9. Siraj SN, Shaharukh Ismail M, Khan GJ et al (2020) Design expert software assisted development and evaluation of cefpodoxime proxetil matrix tablet. Int J Pharm Sci Res 11:2431. https://doi.org/10.13040/IJPSR.0975-8232.11(5).2431-43

    Article  Google Scholar 

  10. Kukati L, Chıttımalli K, Shaik NB, Thoudoju S (2018) Formulation and evaluation of sintered floating tablets of cefpodoxime proxetil. Pharm Sci 15:278–290. https://doi.org/10.4274/tjps.59454

    Article  CAS  Google Scholar 

  11. Kwak SY, Lew TTS, Sweeney CJ et al (2019) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol 14:447–455. https://doi.org/10.1038/s41565-019-0375-4

    Article  CAS  PubMed  Google Scholar 

  12. Rabea EI, Badawy ME-T, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4:1457–1465. https://doi.org/10.1021/bm034130m

    Article  CAS  Google Scholar 

  13. Tin S, Sakharkar KR, Lim CS, Sakharkar MK (2009) Activity of Chitosans in combination with antibiotics in Pseudomonas aeruginosa. Int J Biol Sci 5:153–160. https://doi.org/10.7150/ijbs.5.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qi L, Xu Z, Jiang X et al (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700. https://doi.org/10.1016/j.carres.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  15. Cuero RG, Osuji G, Washington A (1991) N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnol Lett 13:441–444. https://doi.org/10.1007/BF01030998

    Article  CAS  Google Scholar 

  16. Balland Olivier, Pinto-Alphandary H (1994) The uptake of ampicillin-loaded nanoparticles by murine macrophages infected with Salmonella typhimuriume. J Antimicrob Chemother 33:509–522

    Article  CAS  Google Scholar 

  17. Yurt F, Ersöz OA, Harputlu E, Ocakoglu K (2018) Preparation and evaluation of effect on Escherichia coli and Staphylococcus aureus of radiolabeled ampicillin-loaded graphene oxide nanoflakes. Chem Biol Drug Des 91:1094–1100. https://doi.org/10.1111/cbdd.13171

    Article  CAS  PubMed  Google Scholar 

  18. Ocakoglu K, Yildirim Y, Yurt Lambrecht F et al (2008) Biological investigation of 131 I-labeled new water soluble Ru(II) polypyridyl complex. Appl Radiat Isot 66:115–121. https://doi.org/10.1016/j.apradiso.2007.07.033

    Article  CAS  PubMed  Google Scholar 

  19. Jamil B, Habib H, Abbasi SA et al (2016) Development of cefotaxime ımpregnated chitosan as nano-antibiotics: de novo strategy to combat biofilm forming multi-drug resistant pathogens. Front Microbiol 7:330. https://doi.org/10.3389/fmicb.2016.00330

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jamil B, Habib H, Abbasi S et al (2016) Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydr Polym 136:682–691. https://doi.org/10.1016/j.carbpol.2015.09.078

    Article  CAS  PubMed  Google Scholar 

  21. Ribeiro TG, Chávez-Fumagall MA, Valadares DG et al (2014) Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomed 9:877–890. https://doi.org/10.2147/IJN.S55678

    Article  Google Scholar 

  22. Khan F, Katara R, Ramteke S (2010) Enhancement of bioavailability of cefpodoxime proxetil using different polymeric microparticles. AAPS PharmSciTech 11:1368–1375. https://doi.org/10.1208/s12249-010-9505-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wiedemann B, Luhmer E, Zühlsdorf MT (1991) Microbiological evaluation of cefpodoxime proxetil. Drugs 42:6–12. https://doi.org/10.2165/00003495-199100423-00004

    Article  CAS  PubMed  Google Scholar 

  24. Clogston JD, Patri AK (2011) Zeta potential measurement. In: McNeil SE (ed) Characterization of nanoparticles ıntended for drug delivery. Humana Press, Totowa, pp 63–70

    Chapter  Google Scholar 

  25. Gazori T, Khoshayand MR, Azizi E et al (2009) Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym 77:599–606. https://doi.org/10.1016/j.carbpol.2009.02.019

    Article  CAS  Google Scholar 

  26. Davis SS (1997) Biomédical applications of nanotechnology—implications for drug targeting and gene therapy. Trends Biotechnol 15:217–224. https://doi.org/10.1016/S0167-7799(97)01036-6

    Article  CAS  PubMed  Google Scholar 

  27. Mohammadpour Dounighi N, Eskandari R, Avadi MR et al (2012) Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venom Anim Toxins Incl Trop Dis 18:44–52. https://doi.org/10.1590/s1678-91992012000100006

    Article  CAS  Google Scholar 

  28. Elçin E (2013) Panomycocin-incorporated chitosan-tpp nanoparticles: preparation, characterization and in vitro determination of antifungal activity against human dermatophytes. Master Thesis, Middle East Technical University, Institute of Science, Ankara. https://open.metu.edu.tr/handle/11511/22920

  29. Azevedo JR, Sizilio RH, Brito MB et al (2011) Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J Therm Anal Calorim 106:685–689. https://doi.org/10.1007/s10973-011-1429-5

    Article  CAS  Google Scholar 

  30. Knaul JZ, Hudson SM, Creber KAM (1999) Improved mechanical properties of chitosan fibers. J Appl Polym Sci 72:17211732

    Article  Google Scholar 

  31. Mujtaba A, Ali M, Kohli K (2014) Formulation of extended release cefpodoxime proxetil chitosan–alginate beads using quality by design approach. Int J Biol Macromol 69:420–429. https://doi.org/10.1016/j.ijbiomac.2014.05.066

    Article  CAS  PubMed  Google Scholar 

  32. Sobhani Z, Mohammadi Samani S, Montaseri H, Khezri E (2017) Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharm Bull 7:427–432. https://doi.org/10.15171/apb.2017.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shahzadi SK, Qadir MA, Shabnam S, Javed M (2015) 99mTc-amoxicillin: a novel radiopharmaceutical for infection imaging. Arab J Chem. https://doi.org/10.1016/J.ARABJC.2015.04.003

    Article  Google Scholar 

  34. Ribeiro TG, Franca JR, Fuscaldi LL et al (2014) An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate moleculeseduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int J Nanomedicine. https://doi.org/10.2147/IJN.S68966

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Yurt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özel, D., Yurt, F. Investigation of radiolabelled chitosan nanoparticles bearing Cefpodoxime Proxetil, and in vitro antibacterial effect on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. J Radioanal Nucl Chem 326, 1551–1558 (2020). https://doi.org/10.1007/s10967-020-07430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07430-z

Keywords

Navigation