Skip to main content
Log in

The preparation of oxidative resin loaded with Fe3+ and their removal performance for 110 mAg in colloidal form

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

110 mAg, comes from pressurized water reactor units, has become one of the major radionuclides affecting the surrounding environment. The chemical species of 110 mAg are controlled by additives or impurities during operation process of nuclear power plant. Colloidal state (named Ag0) and ionic state are main chemical forms. It is difficult to remove Ag0 by commercial ion exchange resin because the colloidal particles have different sizes and low charge. The oxidative resin loaded with Fe3+ were prepared and used for removal of colloidal Ag from aqueous solution. The influence factors such as resin dosage, adsorption time and initial concentration of Ag0 were investigated through batch experiments. The adsorption efficiency of the oxidative resin towards Ag0 in aqueous solution could reach 92.5% under pH 7. The adsorption process corresponds to the Langmuir adsorption model and pseudo-second-order kinetic equation. XPS analysis clearly shows the presence of binding energy peaks of Fe2+ and Ag+, which indicates the adsorption mechanism towards Ag0 is based on the combined actions of redox and ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ansari R, Delavar AF (2009) J Appl Polym Sci 113:2293–2300

    Article  CAS  Google Scholar 

  2. Davenport LL, Hsieh H, Eppert BL (2015) Neurotoxicol Teratol 51:68–76

    Article  CAS  Google Scholar 

  3. Men W, Deng FF, He JH (2017) Ecotox Environ Safe 144:601–610

    Article  CAS  Google Scholar 

  4. Ghassabzadeh H, Mohadespour A, Torabmostaedi M, Zaheri P, Ghannadi M, Taheri H (2010) J Hazard Mater 177:950–955

    Article  CAS  Google Scholar 

  5. Bianchini A, Wood CM (2003) Environ Toxicol Chem 22:1361–1367

    Article  CAS  Google Scholar 

  6. Kissane MP (2009) Nucl Eng Des 239:3076–3091

    Article  CAS  Google Scholar 

  7. Dementeva OV, Malkovskii AV, Filippenko MA (2008) Colloid J 70:561–573

    Article  CAS  Google Scholar 

  8. Sabrina SA, HemLata KB (2019) J Radioanal Nucl Chem 322:225–230

    Article  Google Scholar 

  9. Shen L, Fischer J, Martin J (2016) Sci Total Environ 223–233:569–570

    Google Scholar 

  10. Helal AA, Salim NZ (2006) J Radioanal Nucl Chem 267:369–372

    Article  CAS  Google Scholar 

  11. Dubey NB, Bagla HK (2007) J Radioanal Nucl Chem 274:271–276

    Article  CAS  Google Scholar 

  12. Lina A, Alan D, Airi P (2003) J Mater Chem 13:2969–2974

    Article  Google Scholar 

  13. Osmanlioglu AE (2006) J Hazard Mater 137:332–335

    Article  CAS  Google Scholar 

  14. Chakrapani G, Mahanta PL, Murty DSR (2001) Talanta 53:1139–1147

    Article  CAS  Google Scholar 

  15. Hossein AZ, Marziyeh ASA (2018) Anal Bioanal Chem Res 5:23–39

    Google Scholar 

  16. Bhuyan MM, Okabe H, Hidaka Y (2018) J Appl Polym Sci 135:45906 (1–14)

    Article  Google Scholar 

  17. Nasef MM, Saidi H, Ujang Z (2010) J Chil Chem Soc 55:421–427

    Article  CAS  Google Scholar 

  18. Elsawy NM, Hegazy EA, Ali AE (2007) Nucl Instrum Meth B 264:227–234

    Article  CAS  Google Scholar 

  19. Dementeva OV, Malkovskii AV, Filippenko MA, Rudoy VM (2008) Colloid J 70:561–573

    Article  CAS  Google Scholar 

  20. He X, Zhao X, Chen Y, Feng JY (2008) Mater Charact 59: 380–384

    Article  CAS  Google Scholar 

  21. Mansouri SS, Ghader S (2009) Arab J Chem 2:47–53

    Article  CAS  Google Scholar 

  22. Pattanayak S, Swarnkar A, Priyam A, Bhalerao GM (2014) Dalton Trans 11826–11833

  23. Siekkinen AR, Mclellan JM, Chen JY, Xia YN (2006) Chem Phys Lett 432:491–496

    Article  CAS  Google Scholar 

  24. Abedini A, Menon PS, Daud AR (2016) J Radioanal Nucl Chem 307:985–991

    Article  CAS  Google Scholar 

  25. Rudzinski W, Plazinski W (2006) J Phys Chem B 110:16514–16525

    Article  CAS  Google Scholar 

  26. Saeid A (2004) J Colloid Interface Sci 276:47–52

    Article  Google Scholar 

  27. Cheng XQ, Liu M, Zhang AF, Hu S, Song CS, Zhang GL, Guo XW (2015) Nanoscale 7:9738–9745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the National Natural Science Foundation of China (Grant No. 11675103, 11975152, 91226111) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, J., Fu, L., Pan, X. et al. The preparation of oxidative resin loaded with Fe3+ and their removal performance for 110 mAg in colloidal form. J Radioanal Nucl Chem 326, 1343–1349 (2020). https://doi.org/10.1007/s10967-020-07404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07404-1

Keywords

Navigation