Skip to main content
Log in

Comparative study of 110mAg(I) removal from aqueous media by humic substances

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, humic substances—dry cowdung powder and humic acid were used for the removal of precious metal ion Ag(I) from aqueous solution. The effect of process parameters such as contact time, adsorbent dose, pH, and metal ion concentration on the adsorption process was estimated. These novel sorbents exhibited high percentage removal of Ag(I) as 95% and 77%, with a biosorption capacity of 19.0 mg g−1 and 3.88 mg g−1 for dry cowdung powder and humic acid respectively. High uptake percentages along with thermodynamic and kinetic calculations prove this process to be economical, practicable and the most eco-friendly amongst the available techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Semionov A (2018) Minamata disease: review. World J Neurosci 8:178–184

    Article  Google Scholar 

  2. Mazumder D, Dasgupta UB (2011) Chronic arsenic toxicity: studies in West Bengal, India. Kaohsiung J Med Sci 27(9):360–370

    Article  CAS  Google Scholar 

  3. Zeng H, Wu J (2013) Heavy metal pollution of lakes along the mid-lower reaches of the Yangtze River in China: intensity, sources and spatial patterns. Int J Environ Res Public Health 10(3):793–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quiton KG, Doma B, Futalan CM, Wan MW (2018) Removal of chromium(VI) and zinc(II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcus epidermidis. Sustain Environ Res 28(5):206–213

    Article  CAS  Google Scholar 

  6. Hefne JA, Mekhemer WK, Alandis NM, Aldayel OA, Alajyan T (2010) Removal of silver(I) from aqueous solutions by natural bentonite. JKAU Sci 22(1):155–176

    Article  Google Scholar 

  7. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  8. Hanzlik J, Jehlicka J, Sebek O, Weishauptova Z, Machovic V (2004) Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials. Water Res 38(8):2178–2184

    Article  CAS  PubMed  Google Scholar 

  9. Jeon C (2015) Adsorption behavior of silver ions from industrial wastewater onto immobilized crab shell beads. J Ind Eng Chem 32:195–200

    Article  CAS  Google Scholar 

  10. Herrera I, Tiemann KJ, Armendariz V (2003) Binding of silver(I) ions by alfalfa biomass (Medicago sativa): batch pH, time, temperature, and ionic strength studies. J Hazard Subst Res 4:1–16

    Google Scholar 

  11. Jeon C (2017) Adsorption of silver ions from industrial wastewater using waste coffee grounds. Korean J Chem Eng 34(2):384–391

    Article  CAS  Google Scholar 

  12. Silva-medeiros FV, Consolin-filho N, Lima MX, Bazzo FP, Barros MA, Tavares CR (2016) Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon. Environ Technol 37(24):3087–3093

    Article  CAS  PubMed  Google Scholar 

  13. Sarı A, Tuzen M (2013) Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous Mesoporous Mater 170:155–163

    Article  CAS  Google Scholar 

  14. Cantuaria ML, Almeida Neto AF, Nascimento ES, Vieira MG (2016) Adsorption of silver from aqueous solution onto pre-treated bentonite clay: complete batch system evaluation. J Clean Prod 112:1112–1121

    Article  CAS  Google Scholar 

  15. Barot NS, Bagla HK (2009) Extraction of humic acid from biological matrix: dry cow dung powder. Green Chem Lett Rev 2(4):217–221

    Article  CAS  Google Scholar 

  16. Akinde SB, Obire O (2008) Aerobic heterotrophic bacteria and petroleum-utilizing bacteria from cow dung and poultry manure. World J Microbiol Biotechnol 24(9):1999–2002

    Article  Google Scholar 

  17. Barot NS, Khilnani RP, Bagla HK (2014) Biosorptive profile of synthetic and natural humiresin for the remediation of metallic water pollutants. J Radioanal Nucl Chem 302(2):951–959

    Article  CAS  Google Scholar 

  18. Boggs S, Livermore D, Seitz MG (1985) Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. Geosci: Environ Sci. http://udspace.udel.edu/handle/19716/1567

  19. Pettit RE (2004) Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. A & M University, Texas. http://www.humates.com/pdf/ORGANICMATTERPettit.pdf

  20. Bhatt ND, Bagla HK (2017) Sustainable remediation of Hg(II) from wastewater by combo humiresin- dry cow dung powder. J Environ Biotechnol Res 6(1):168–178

    Google Scholar 

  21. Ambe F, Ambe S, Enomoto S (2003) Handbook of nuclear chemistry: chemical applications of nuclear reactions and radiations, vol 3. Kluwer Academic Publishers, Saitama

    Google Scholar 

  22. Lihareva N, Dimova L, Petrov O, Tzvetanova Y (2010) Ag+ sorption on natural and Na-exchanged clinoptilolite from Eastern Rhodopes. Microporous Mesoporous Mater Bulg 130(1–3):32–37

    Article  CAS  Google Scholar 

  23. Lu X, Yin QF, Xin Z, Zhang ZQ (2010) Powerful adsorption of silver(I) onto thiol-functionalized polysilsesquioxane microspheres. Chem Eng Sci 65(24):6471–6477

    Article  CAS  Google Scholar 

  24. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  25. Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98:452–455

    Article  CAS  PubMed  Google Scholar 

  26. Horsfall M, Spiff AI (2005) Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron J Biotechnol 8(2):162–169

    Article  Google Scholar 

  27. King P, Namdeti R, Lahari BS, Yekula PK (2008) Biosorption of zinc onto Syzygium cumini L.: equilibrium and kinetic studies. Chem Eng J. 144(2):181–187

    Article  CAS  Google Scholar 

  28. Tee TW, Khan MA (1988) Removal of lead, cadmium and zinc by waste tea leaves. Environ Technol Lett 9(1):1223–1232

    Article  CAS  Google Scholar 

  29. Mishraa PC, Patel RK (2009) Removal of lead and zinc ions from water by low cost adsorbents. J Hazard Mater 168(1):31–325

    Article  CAS  Google Scholar 

  30. Navarro RR, Wada S, Tatsumi K (2005) Heavy metal precipitation by polycation–polyanion complex of PEI and its phosphonomethylated derivative. J Hazard Mater 123(1–3):203–209

    Article  CAS  PubMed  Google Scholar 

  31. Morsy M, Ahmed A, Ten NM, Ibrahim H, Doaa H (2017) Heavy metals biosorption from aqueous solution by endophytic Drechslera hawaiiensis of Morus alba L. derived from Heavy Metals Habitats. Mycobiology 45(2):73–83

    Article  Google Scholar 

  32. Nightingale ER (1959) Phenomenological theory of ion solvation: effective radii of hydrated ions. J Phys Chem 63(9):1381–1387

    Article  CAS  Google Scholar 

  33. Bakouri HE, Usero J, Morillo J, Ouassini A (2009) Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium, kinetic and thermodynamic modeling studies. Bioresour Technol 100(18):4147–4155

    Article  CAS  PubMed  Google Scholar 

  34. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakademiens, Handl. vol 24, pp 1–39

  35. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  36. Ho YS, Mckay G (2000) The kinetics of sorption of divalent metal ions onto Sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemlata K. Bagla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S.A., Bagla, H.K. Comparative study of 110mAg(I) removal from aqueous media by humic substances. J Radioanal Nucl Chem 322, 225–230 (2019). https://doi.org/10.1007/s10967-019-06691-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06691-7

Keywords

Navigation