Skip to main content
Log in

Acid strength dependent behaviour of Gd(III) ions in aqueous medium and its effect on Gd(III) separation from aqueous phase

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Present paper deals with evaluation of thermodynamic parameters like apparent molal volume and compressibility, thermal expansion coefficient, hydration number, heat of dilution from density, sound velocity measurements and calorimetric studies of Gd(NO3)3 solutions in aqueous medium and in presence of nitric acid of different strength. Nature of complex formed by Gd ions in aqueous medium in presence of varying concentrations of nitric acid, as revealed by changes in the thermodynamic parameters and its extraction profile, is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou L, Shi H, Li Z, He C (2020) Recent advances in complex coacervation design from macromolecular assemblies and emerging applications. Macromol Rapid Commun. https://doi.org/10.1002/marc.202000149

    Article  Google Scholar 

  2. Huang Y, Feng X (2019) Polymer-enhanced ultrafiltration: fundamentals, applications and recent developments. J Mem Sci 586:53–83

    CAS  Google Scholar 

  3. Rai D, Kitamura A, Altmaier M, Rosso KM, Sasaki T, Kobayashi T (2018) A thermodynamic model for ZrO2 solubility at 25°C in the Ca2+–Na+–H+–Cl–OH–H2O system. A critical review. J Solut Chem 47:855–891

    CAS  Google Scholar 

  4. Postnikova GB, Shekhovtsova EA (2018) Myoglobin: oxygen depot or oxygen transporter to mitochondria? A novel mechanism of myoglobin deoxygenation in cells. Biochemistry (Moscow) 83(2):168–183

    CAS  Google Scholar 

  5. Xiong Y (ed) (2018) Solution chemistry: advances in research and applications. Nova Science, New York

    Google Scholar 

  6. Endrizzi F, Leggett CJ, Rao L (2016) Scientific basis for efficient extraction of uranium from sea water: understanding the chemical speciation of uranium under sea water conditions. Ind Eng Chem Res 55(15):4249–4256

    CAS  Google Scholar 

  7. Powell KJ, Brown PL, Byrne RH, Sjoberg S, Wanner H (2013) Chemical Speciation of environmentally significant metals with inorganic ligands. Part 5: the Zn2+ + OH, Cl, CO32−, SO42−, PO43− systems (IUPAC Tech. Report). Pure Appl Chem 85(12):2249–2311

    CAS  Google Scholar 

  8. Elder D, Holm R (2013) Aqueous solubility: simple predictive methods (in silico, in vivo, bio-relevant approaches). Int J Pharm 453(1):3–11

    CAS  Google Scholar 

  9. Bugarčić ZD, Bogojeski J, Van Eldic R (2015) Kinetics, mechanism and equilibrium studies on the substitution reactions of Pd(II) in reference to Pt(II) complexes with biomolecules. Coord Chem Rev 292:91–106

    Google Scholar 

  10. Kasche V (1986) Mechanism and yields in enzyme catalyzed equilibrium and kinetically controlled synthesis of beta-lactam antibiotics, peptides and other condensation products. Enzyme Microbiol Technol 8(1):4–16

    CAS  Google Scholar 

  11. Warneck P (2018) The oxidation of S(IV) by reaction with Fe(III): a critical review and data analysis. Phys Chem Chem Phys 20(6):4020–4037

    CAS  Google Scholar 

  12. Nash KL, Lumetta GJ (eds) (2011) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing, Elsevier, Amsterdam

    Google Scholar 

  13. Taylor R (ed) (2015) Reprocessing and recycling of spent nuclear fuel. Woodhead Publishing, Elsevier, Amsterdam

    Google Scholar 

  14. Proceedings of the 6th OECD/NEA Information Exchange Meeting on Actinide and fission products Partitioning and Transmutation. EUR 19783 EN, Madrid, Spain (2000)

  15. Nilsson M, Nash KL (2007) Review article: a review of the development and operational characteristics of the TALSPEAK process. Solv Extr Ion Exch 25(6):665–701

    CAS  Google Scholar 

  16. Alfassi ZB, Shani G, Laster BH (1999) On the effect of gadolinium in neutron capture therapy. J Radioanal Nucl Chem 240(2):687

    CAS  Google Scholar 

  17. Nayak D, Lahiri S (1999) Application of radioisotopes in the field of nuclear medicines. J Radioanal Nucl Chem 242(2):423–432

    Article  CAS  Google Scholar 

  18. Vijayalakshmi R, Singh DK, Kotekar MK, Singh H (2014) Separation of high purity gadolinium for reactor application by solvent extraction process. J Radioanal Nucl Chem 300(1):129–135

    Article  CAS  Google Scholar 

  19. Szelecsényi F, Kovács Z, Nagatsu K, Zhang MR, Suzuki K (2016) Investigations of deuteron-induced reactions on natGd up to 30 MeV: possibility of production of medically relevant 155Tb, 161Tb radioisotopes. J Radioanal Nucl Chem 307(3):1877–1881

    Article  Google Scholar 

  20. Xia D, Li X, Ding Y (2016) Relative light yield of liquid scintillator and gadolinium loaded liquid scintillator. J Radioanal Nucl Chem 308(3):991–994

    CAS  Google Scholar 

  21. Spedding FH, Shiers LE, Brown MA, Baker JL, Guitierrez L, McDowell LS, Habenschuss A (1975) Densities and apparent molal volumes of some aqueous rare earth solutions at 250. III. Rare earth nitrates. J Phys Chem 79:1087–1096

    CAS  Google Scholar 

  22. Spedding FH, Saeger VW, Gray KA, Boneau PK, Brown MA, DeKock CW, Baker JL, Shiers LE, Weber HO, Habenschuss A (1975) Densities and apparent molal volumes of some aqueous rare earth solutions at 250 I. Rare earth chlorides. J Chem Eng Data 20:72–81

    CAS  Google Scholar 

  23. Spedding FH, Shiers LE, Brown MA, Derer JL, Swanson DL, Habenschuss A (1975) Densities and apparent molal volumes of some aqueous rare earth solutions at 250. II. Rare earth perchlorates. J Chem Eng Data 20:81–88

    CAS  Google Scholar 

  24. Coward NA, Kiser RW (1966) A spectrophotometric study of the Nd3+–NO3 association. J Phys Chem 70:213–217

    CAS  Google Scholar 

  25. Peppard DF, Mason GW, Hucher I (1962) Stability constants of certain lanthanide(III) and actinide(III)chloride and nitrate complexes. J Inorg Nucl Chem 24:881–888

    Google Scholar 

  26. Nelson DL, Irish DE (1971) Interactions in lanthanide systems. I. A Raman and infrared study of aqueous gadolinium nitrate. J Chem Phys 54:4479–4489

    CAS  Google Scholar 

  27. Knoeck JW (1969) Vibrational spectrometric and electrochemical evidence for lanthanum(III)–nitrate complexes in aqueous solution. Anal Chem 41:2069–2079

    CAS  Google Scholar 

  28. Silber HE, Scheinin N, Atkinson G, Grecsek J (1972) Kinetic investigation of lanthanide (III)–nitrate complexation reaction. J Chem Soc Faraday Trans I 68:1200–1212

    CAS  Google Scholar 

  29. Garnsey R, Ebdon DW (1969) Ionic association in aqueous lanthanide nitrate solutions by ultrasonic absorption spectroscopy. J Am Chem Soc 91:50–56

    CAS  Google Scholar 

  30. Spedding FH, Jaffe S (1954) Conductances, transference numbers and activity coefficients of some rare earth perchlorates and nitrates at 250. J Am Chem Soc 76:884–888

    CAS  Google Scholar 

  31. Dash D, Kumar S (2015) Temperature dependency studies on volumetric change and structural interaction in aqueous rare earth nitrate solutions. J Solut Chem 44:1812–1832

    CAS  Google Scholar 

  32. Spedding FH, Cullen PF, Habenschuss A (1974) Apparent molal volumes of some dilute aqueous rare earth salt solutions at 250. J Phys Chem 78:1106–1110

    CAS  Google Scholar 

  33. Latrous H, Besbes R, Ouerfelli N (2008) Self-diffusion coefficients and structure of the trivalent f-element ions, Eu, Gd, Am, Bk, Cf and Es in aqueous diluted and concentrated solutions. J Mol Liq 138:51–54

    CAS  Google Scholar 

  34. Marcus Y (2011) Electrostriction in electrolyte solutions. Chem Rev 111:2761–2783

    CAS  Google Scholar 

  35. Patil K, Mehta G (1988) Volume and compressibility changes in aqueous mixed-salt solutions at 25°C. J Chem Soc Farad Trans 84(7):2297–2303

    CAS  Google Scholar 

  36. Hakin AW, Liu JL, Ericksson K, Munoz JV, Rard JA (2005) Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J Chem Thermodyn 37:153–167

    CAS  Google Scholar 

  37. Hepler LG (1969) Thermal expansion and structure in water and aqueous solutions. Can J Chem 47:4613–4617

    CAS  Google Scholar 

  38. Dash D, Kumar S, Mallika C, Mudali UK (2014) Structural interaction leading to volumetric changes in aqueous solutions of nitrates of rubidium, cesium, strontium, yttrium, and gallium at different temperatures. J Radionanal Nucl Chem 301:685–694

    CAS  Google Scholar 

  39. Millero FJ (1971) The molal volume of electrolytes. Chem Rev 71:147–176

    CAS  Google Scholar 

  40. Afanas’ev VN (2011) Solvation of electrolytes and non-electrolytes in aqueous solutions. J Phys Chem B 115:6541–6563

    Google Scholar 

  41. Levy A, Andelman D (2012) Dielectric constant of ionic solutions: a field-theory approach. Phys Rev Lett 108(22):2278011–2278015

    Google Scholar 

  42. Choppin GR (1971) Structure and thermodynamics of lanthanide and actinide complexes in solution. Pure Appl Chem 27(1–2):23–42

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, M., Sinharoy, P. & Banerjee, D. Acid strength dependent behaviour of Gd(III) ions in aqueous medium and its effect on Gd(III) separation from aqueous phase. J Radioanal Nucl Chem 326, 1361–1373 (2020). https://doi.org/10.1007/s10967-020-07395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07395-z

Keywords

Navigation