Skip to main content
Log in

Increased radon concentration in Katalekhor tourist cave during an earthquake compared with 10 years of follow-up data

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

On May 27, 2008, a strong earthquake of magnitude 5.3 Richter hit Zanjan province. The radon concentration has been measured and registered at the time of earthquake occurrence at 10:48 local time inside the Katalekhor cave being situated at suburb of Zanjan city. After this event, it was planned to measure and analyze the radon concentration in the same year (2008) and 10 years after the earthquake (2018) by using passive methods and the results have been presented. Real time observations show an increase of five times in radon concentration when earthquake happened comparing to normal condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mogro-Campero A, Fleischer RL, Likes RS (1980) Changes in subsurface radon concentration associated with earthquake. J Geophys Res 85(6):3053–3057. https://doi.org/10.1029/JB085iB06p03053

    Article  CAS  Google Scholar 

  2. Fleischer RL (1981) Dislocation model for radon response to distant earthquakes. Geophys Res Lett 8(5):477–480. https://doi.org/10.1029/GL008i005p00477

    Article  CAS  Google Scholar 

  3. Chyi LL, Quick TJ, Yang TF, Chen CH (2005) Soil gas radon spectra and earthquakes. Terr Atmos Ocean Sci 16(4):763–774. https://doi.org/10.3319/TAO.2005.16.4.763(GIG)

    Article  Google Scholar 

  4. Yang TF, Walia V, Chyi LL, Fu CC, Chen CH, Liu TK, Song SR, Lee CY, Lee M (2005) Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiat Meas 40(2):496–502. https://doi.org/10.1016/j.radmeas.2005.05.017

    Article  CAS  Google Scholar 

  5. Negarestani A, Namvaran M, Shahpasandzadeh M, Fatemi SJ, Alavi SA, Hashemi SM, Mokhtari M (2015) Design and investigation of a continuous radon monitoring network for earthquake precursory process in Great Tehran. J Radioanal Nucl Chem 300(2):757–767. https://doi.org/10.1007/s10967-014-3176-0

    Article  CAS  Google Scholar 

  6. Hashemi SM, Negarestani A, Namvaran M, MusaviNasab SM (2013) An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes. J Radioanal Nucl Chem 295:2249–2262. https://doi.org/10.1007/s10967-012-2310-0

    Article  CAS  Google Scholar 

  7. Laskar I, Phukon P, Goswami AK, Chetry G, Roy UC (2011) A possible link between radon anomaly and earthquake. Geochem J 45(6):439–446. https://doi.org/10.2343/geochemj.1.0146

    Article  CAS  Google Scholar 

  8. Friedmann H (2012) Radon in earthquake prediction research. Radiat Prot Dosim 149(2):177–184. https://doi.org/10.1093/rpd/ncr229

    Article  CAS  Google Scholar 

  9. Woitha H (2015) Radon earthquake precursor: a short review. Eur Phys J-Spec Top 224(4):611–627. https://doi.org/10.1140/epjst/e2015-02395-9

    Article  CAS  Google Scholar 

  10. Riggio A, Santulin M (2015) Earthquake forecasting: a review of radon as seismic precursor. Boll Geofis Teoricaed Appl 56:95–114. https://doi.org/10.5772/29917

    Article  Google Scholar 

  11. Petraki E, Nikolopoulos D, Panagiotaras D, Cantzos D, Yannakopoulos P, Nomicos C, Stonham J (2015) Radon-222: a potential short- term earthquake precursor. J Earth Sci Clim Change 6(6):6–17. https://doi.org/10.4172/2157-7617.1000282

    Article  Google Scholar 

  12. Deb A, Gazi M, Barman CH (2016) Anomalous soil radon fluctuations—signal of earthquakes in Nepal and eastern India regions. J Earth Syst Sci 125(8):1657–1665. https://doi.org/10.1007/s12040-016-0757-z

    Article  CAS  Google Scholar 

  13. Tomer A (2016) Radon as a Earthquake Precursor: a Review. Int J Sci Eng Technol 4(1):815–822. https://doi.org/10.1140/epjst/e2015-02395-9

    Article  CAS  Google Scholar 

  14. Ouzounov D, Pulinets S, Lee L, Guiliani G, Fu Ch-Ch, Karastathis V, Tsinganos K, Kafatos M, Eleftheriou G, Hattori K (2018) Radon activity—the hidden driver behind pre-earthquake anomalies in the Earth atmosphere–ionosphere environment. Geophys Res Abstr 20: EGU2018-5739-1

  15. Ambrosino F, Thinova L, Briestensky M, Sabbarese C (2019) Analysis of radon time series recorded in Slovak and Czech caves for the detection of anomalies due to seismic phenomena. Radiat Prot Dosim 186(2):1–5. https://doi.org/10.1093/rpd/ncz245

    Article  CAS  Google Scholar 

  16. Taheri M, Hosseini TS (2005) Characteristic studies for fast detection of a wide energy range of alpha particles in polycarbonate detectors. Radiat Meas 40(2):307–310. https://doi.org/10.1016/j.radmeas.2005.06.019

    Article  CAS  Google Scholar 

  17. Taheri M, Jafarizadeh M, Baradaran S, Zainali GH (2006) Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors. J Radiol Prot 26(4):389–395. https://doi.org/10.1088/0952-4746/26/4/003

    Article  CAS  PubMed  Google Scholar 

  18. Hosseini Pooya SM, Afarideh H, Kardan MR, Taheri M (2008) Design of an alpha spectrometry system for separated measurement of radon/thoron daughters’ concentration by lexan PC SSNTD. Nucl Instrum Meth A 594(1):44–49. https://doi.org/10.1016/j.nima.2008.05.055

    Article  CAS  Google Scholar 

  19. Hosseini Pooya SM, Afarideh H, Taheri M, Kardan MR (2008) Passive α-particles spectrometry by polycarbonate SSNTD using new etching conditions. Radiat Phys Chem 77(8):949–953. https://doi.org/10.1016/j.radphyschem.2008.02.010

    Article  CAS  Google Scholar 

  20. Taheri M, Movafeghi A, Rastkhah N (2011) Automation of film densitometry for application in personal monitoring. Radiat Prot Dosim 144(1–4):239–242. https://doi.org/10.1093/rpd/ncq553

    Article  CAS  Google Scholar 

  21. Hosseini Pooya SM, Taheri M (2013) A calibration setting with uncertainty measurements for passive/active radon monitors using flow-through source type. Appl Radiat Isotopes 73:49–51. https://doi.org/10.1016/j.apradiso.2012.12.003

  22. Hadad K, Sarshough S, Faghihi R, Taheri M (2013) Application of polystyrene films for indoor radon dosimetry as SSNTD. Appl Radiat Isotopes 74 (c): 23–25. https://doi.org/10.1016/j.apradiso.2012.12.008

Download references

Acknowledgements

The authors would like to extend their gratitude to Dr. M. R. Kardan for his support, Dr. S. M. Hosseini Pooya and Mr. M. R. Sadeghkhani for their valuable assistance in the laboratory. Also the cooperation assistance of the cave managements and staff in the distribution of the detectors is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Baradaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M., Baradaran, S. & Jafarizadeh, M. Increased radon concentration in Katalekhor tourist cave during an earthquake compared with 10 years of follow-up data. J Radioanal Nucl Chem 326, 911–918 (2020). https://doi.org/10.1007/s10967-020-07389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07389-x

Keywords

Navigation