Skip to main content
Log in

Long-term mobility of uranium in the granitic KURT site using isotopic analysis and sequential chemical extraction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the long-term mobility of natural uranium in the KAERI Underground Research Tunnel (KURT) site was investigated using sequential chemical extraction and isotopic analyses of natural uranium in granite. It was found that uranium(VI) would be leached out due to preferential leaching of 234U relative 238U and concentrated by an uraniferous enrichment process through long-term interactions with the oxic KURT groundwater. Our results also suggest that the migration of the preferentially released uranium(VI) through fractured granite can be significantly retarded by secondary mineral phases formed by the weathering processes of granite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schwyn B, Wersin P, Ruedi J, Schneider J, Altmann S, Missana T, Noseck U (2012) FUNMIG Integrated Project results and conclusions from a safety case perspective. Appl Geochem 27:501–515

    CAS  Google Scholar 

  2. Altmann S (2008) Geochemical research: a key building block for nuclear waste disposal safety cases. J Contam Hydrol 102:174–179

    CAS  Google Scholar 

  3. Baik MH, Lee SY, Shon WJ (2009) Retention of uranium(VI) by laumontite, a fracture-filling material of granite. J Radioanal Nucl Chem 280:69–77

    CAS  Google Scholar 

  4. Tripathi RM, Sahoo SK, Mohapatra S, Lenka P, Dubey JS, Puranik VD (2013) Study of uranium isotopic composition in groundwater and deviation from secular equilibrium condition. J Radioanal Nucl Chem 295:1195–1200

    CAS  Google Scholar 

  5. Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ, Boyle EA (2008) Natural fractionation of 238U/235U. Geochim Cosmochim Acta 72:345–359

    CAS  Google Scholar 

  6. Gascoyne M (1992) In: Ivanovich M, and Harmon RS (eds) Uranium-series disequilibrium: applications to environmental problems, 2nd edn. Clarendon Press, Oxford

  7. Noseck U, Tullborg E-L, Suksi J, Laaksoharju M, Havlova V, Denecke MA, Buckau G (2012) Real system analyses/natural analogues. Appl Geochem 27:490–500

    CAS  Google Scholar 

  8. Kim JI (2006) Significance of actinide chemistry for the long-term safety of waste disposal. Nucl Eng Technol 38:459–482

    CAS  Google Scholar 

  9. Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16

    CAS  Google Scholar 

  10. Smellie JAT, Karlsson F (1999) The use of natural analogues to assess radionuclide transport. Eng Geol 52:193–220

    Google Scholar 

  11. Cho W-J, Kwon S, Park J-H (2008) KURT, a small-scale underground research laboratory for the research on a high-level waste disposal. Ann Nucl Energy 35:132–140

    CAS  Google Scholar 

  12. Choi H-J, Lee JY, Choi J (2013) Development of geological disposal systems for spent fuels and high-level radioactive wastes in Korea. Nucl Eng Technol 45:29–40

    Google Scholar 

  13. Baik MH, Kang MJ, Cho SY (2015) A compartive study for the determiantion of uranium and uranium isotopes in granitic groundwater. J Radioanl Nucl Chem 304:9–14

    CAS  Google Scholar 

  14. Eichrom Method ACS07: Uranium in Soil, Eichrom Technologies, LLC. https://www.eichrom.com/eichrom/methods/eichrom-methods/. Accessed 1 May 2014

  15. Yanase N, Nightingale T, Payne T, Duerden P (1991) Uranium distribution in mineral phases of rock by sequential traction procedure. Radiochim Acta 52(53):387–393

    Google Scholar 

  16. Crespo MT, Pérez del Villar L, Pelayo JM, Quejido A, Sánchez M (1996) Uranium isotopic distribution in the mineral phases of granitic fracture fillings by a sequential extraction procedure. Appl Radiat Isot 47:927–931

    CAS  Google Scholar 

  17. Virtannen S, Vaaramaa K, Lehto J (2013) Fractionation of U, Th, Ra and Pb from boreal forest soils by sequential extractions. Appl Geochem 38:1–9

    Google Scholar 

  18. Baik MH, Hyun SP, Cho WJ, Hahn PS (2004) Contribution of minerals to the sorption of U(VI) on granite. Radiochim Acta 92:663–669

    CAS  Google Scholar 

  19. Osmond JK, Cowart JB (1992) In: Ivanovich M, and Harmon RS (eds) Uranium-series disequilibrium: applications to environmental problems, 2nd edn. Clarendon Press, Oxford

  20. Dawood YH, Abd El-Naby HH, Sharafeldin AA (2004) Influence of the alteration processes on the origin of uranium and europium anomalies in trachyte, central Eastern Desert, Egypt. J Geochem Explor 88:15–27

    Google Scholar 

  21. Omel’yanenko BI, Petrov VA, Poluektov VV (2007) Behavior of uranium under conditions of interaction of rocks and ores with subsurface water. Geol Ore Deposits 40:378–391

    Google Scholar 

  22. Warith AA, Michalik MB, Ali H (2010) Fluorine enriched granites: chemical characterization and relation to uranium mineralization. J Appl Sci Res 6:299–323

    Google Scholar 

  23. Hwang J, Moon SH, Ripley EM, Kim YH (2014) Determining uraniferous host rocks and minerals as a source of dissolved uranium in granite aquifers near the central Ogcheon metamorphic belt, Korea. Environ Earth Sci 72:4035–4046

    CAS  Google Scholar 

  24. Moon SH, Hwang J, Lee JY, Hyun SP, Bae BK, Park Y (2013) Establishing the origin of elevated uranium concentrations in groundwater near the central Ogcheon metamorphic belt, Korea. J Environ Qual 42:118–128

    CAS  Google Scholar 

  25. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    CAS  Google Scholar 

  26. Porcelli D, Andersson PS, Baskaran M, Wasserburg GJ (2001) Transport of U- and Th-series nuclides in a Baltic shield watershed and the Baltic Sea. Geochim Cosmochim Acta 65:2439–2459

    CAS  Google Scholar 

  27. Reynolds BC, Wasserburg GJ, Baskaran M (2003) The transport of U- and Th-series nuclides in sandy confined aquifers. Geochim Cosmochim Acta 67:1955–1972

    CAS  Google Scholar 

  28. Ivanovich M (1994) Uranium series disequilibrium: concepts and applications. Radiochim Acta 64:81–94

    CAS  Google Scholar 

  29. Andrews JN, Giles IS, Kay RLF, Lee DJ, Osmond JK, Cowart JB, Fritz P, Barker JF, Gale J (1982) Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim Cosmochim Acta 46:1533–1543

    CAS  Google Scholar 

  30. Brennecka GA, Wadhwa M (2012) Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications to early Solar System. Proc. Natl Acad Sci USA 109:9299–9303

    CAS  Google Scholar 

  31. Brennecka GA, Borg LE, Hutcheon ID, Sharp MA, Anbar AD (2010) Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238U/235U fractionation mechanism. Earth Planet Sci Lett 291:228–233

    CAS  Google Scholar 

  32. Hiess J, Condon DJ, McLean N, Noble SR (2012) 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335:1610–1614

    CAS  Google Scholar 

  33. Wang X, Johnson TM, Lundstrom CC (2015) Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. Geochim Cosmochim Acta 150:160–170

    CAS  Google Scholar 

  34. Fleischer RL (1980) Isotopic disequilibrium: alpha-recoil damage and preferential solution effects. Science 207:979–981

    CAS  Google Scholar 

  35. Ji S-H, Lee DH, Yeo IW, Park K-W, Koh Y-K (2013) Derivative-assisted classification of fractured zones crossing a deep borehole. Groundwater 52:111–145

    Google Scholar 

  36. Gascoyne M, Cramer JJ (1987) History of actinide and minor element mobility in an Archean granitic batholith in Manitoba. Appl Geochem 2:37–53

    CAS  Google Scholar 

  37. Smellie JAT, MacKenzie AB, Scott RD (1986) An analogue validation study of natural radionuclide migration in crystalline rocks using uranium-series disequilibrium studies. Chem Geol 55:233–254

    CAS  Google Scholar 

  38. Rivas P, Hernán P, Bruno J, Carrera J, Gómez P, Guimera J, Marin C, Pérez del Villar L (1997) El Berrocal project. Characterization and validation of natural radionuclide migration processes under real conditions on the fissured granitic environment. European Commission Nuclear Science and Technology (EUR 17478 EN), Luxemburg

  39. Meinrath G, Klenze R, Kim JI (1996) Direct spectroscopic speciation of uranium(VI) in carbonate solutions. Radiochim Acta 74:81–86

    CAS  Google Scholar 

  40. Amayri S, Reich T, Arnold T, Geipel G, Bernhard G (2005) Spectroscopic characterization of alkaline earth uranyl carbonates. J Solid State Chem 178:567–577

    CAS  Google Scholar 

  41. Jung EC, Cho H-R, Baik MH, Kim H, Cha W (2015) Time-resolved laser fluorescence spectroscopy of UO2(CO3)4-3 . Dalton Trans 44:18831–18838

    CAS  Google Scholar 

  42. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim Acta 89:511–518

    CAS  Google Scholar 

  43. Lee J-Y, Yun J-I (2013) Formation of ternary CaUO2(CO3)2-3 and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans 42:9862–9869

    CAS  Google Scholar 

  44. Blomqvist R, Jaakola T, Niini H, Ahonen L (1991) The Palmottu analogue project: progress report 1990. Geological Survey Finland (YST-73), Helsinki

  45. Griffault LY, Gascoyne M, Kamineni DC, Kerrich R, Vandergraaf TT (1993) Actinide and rare earth element characteristics of deep fracture zones in the Lac du Bonnet Batholith, Manitoba, Canada. Geochim Cosmochim Acta 57:1181–1202

    Google Scholar 

  46. Arnold T, Zorn T, Bernhard G, Nitsche H (1998) Sorption of uranium(VI) onto phyllite. Chem Geol 151:129–141

    CAS  Google Scholar 

  47. Huber F, Kunze P, Geckeis H, Schäfer T (2011) Sorption reversibility kinetics in the ternary system radionuclide-bentonite colloids/nanoparticles-granite fracture filling material. Appl Geochem 26:2226–2237

    CAS  Google Scholar 

  48. Schindler M, Legrand CA, Hochellar MF Jr (2015) Alteration, adsorption and nucleation processes on clay-water interfaces: mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale. Geochim Cosmochim Acta 153:15–36

    CAS  Google Scholar 

  49. Landström O, Tullborg E-L (1990) The influence of fracture mineral/groundwater interaction on the mobility of U, Th, REE and other trace elements. Swedish Nuclear Fuel and Waste Management Co. (SKB TR 90-37), Stockholm

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean government, Ministry of Science and ICT, through two research projects (Grant Nos. 2017M2A8A5014859 and 2017M2B2B1072407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hoon Baik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baik, M.H., Lee, J.K. Long-term mobility of uranium in the granitic KURT site using isotopic analysis and sequential chemical extraction. J Radioanal Nucl Chem 326, 1173–1183 (2020). https://doi.org/10.1007/s10967-020-07380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07380-6

Keywords

Navigation