Skip to main content
Log in

Possible syntheses of unknown superheavy 309,312126 nuclei

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we theoretically investigate 21 projectile-target combinations of stable isotopes for the pre-synthesis parameters and production cross sections of the unknown superheavy 309,312126 nuclei. It is found that 61Ni + 248Cf and 64Ni + 248Cf combinations are the best candidates for the synthesis of the 309,312126 isotopes due to their largest cross sections of 0.03 and 3.6 pb, respectively. Besides, the results in the present and previous works indicate that the uncertainty, from pb to zb, in the synthesis cross sections of superheavy nuclei should be narrowed for a decision of measurements using the presently available facilities. This study, thus, provides valuable data for the synthesis of 126th element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. References [63, 70] used a concept of so-called ground-state level density, \(\rho_{\rm C}^{g} \left( {E^{*} ,J_{\rm C} } \right)\). In fact, this concept is not correct because nuclear level density, by its original definition, is the number of excited states per unit of excitation energy. Thus, nuclear level density reflects the thermodynamic properties of excited nuclei, not nuclei at the ground state [71, 72]. Therefore, in the present work, we use in Eq. (23) the correct definition \(\rho_{\rm C} \left( {E^{*} ,J_{\rm C} } \right)\) instead of \(\rho_{\rm C}^{g} \left( {E^{*} ,J_{\rm C} } \right)\).

References

  1. Patyk Z, Skalski J, Sobiczewski A, Cwiok S (1989) Potential energy and spontaneous-fission half-lives for heavy and superheavy nuclei. Nucl Phys A 502:591–600

  2. Patyk Z, Sobiczewski A (1991) Ground-state properties of the heaviest nuclei analyzed in a multidimensional deformation space. Nucl Phys A 533:132–152

    Google Scholar 

  3. Bender M, Heenen PH, Reinhard PG (2003) Self-consistent mean-field models for nuclear structure. Rev Mod Phys 75:121–180

    CAS  Google Scholar 

  4. Dvorak J et al (2006) Doubly magic nucleus 270 Hs162. Phys Rev Lett 97:242501

    CAS  Google Scholar 

  5. Adamian GG, Antonenko NV, Scheid W (2010) High-spin isomers in some of the heaviest nuclei: spectra, decays, and population. Phys Rev C 81:024320

    Google Scholar 

  6. Adamian GG, Antonenko NV, Kuklin SN, Scheid W (2010) One-quasiparticle states in odd-Z heavy nuclei. Phys Rev C 82:054304

    Google Scholar 

  7. Kuzmina AN, Adamian GG, Antonenko NV, Scheid W (2012) Influence of proton shell closure on production and identification of new superheavy nuclei. Phys Rev C 85:014319

    Google Scholar 

  8. Meng J, Peng J, Zhang SQ, Zhou SG (2006) Possible existence of multiple chiral doublets in 106Rh. Phys Rev C 73:037303

    Google Scholar 

  9. Kruppa AT, Bender M, Nazarewicz W, Reinhard PG, Vertse T, Cwiok S (2000) Shell corrections of superheavy nuclei in self-consistent calculations. Phys Rev C 61:034313

    Google Scholar 

  10. Shi Y, Ward DE, Carlsson BG, Dobaczewski J, Nazarewicz W, Ragnarsson I, Rudolph D (2014) Structure of superheavy nuclei along decay chains of element 115. Phys Rev C 90:014308

    Google Scholar 

  11. Zhou SG (2016) Structure of exotic nuclei: a theoretical review. Phys Scr 91:063008

    Google Scholar 

  12. Li ZX, Zhang ZH, Zhao PW (2015) Shape coexistence and α-decay chains of 293Lv. Front Phys 10(3):102101

    Google Scholar 

  13. Meng J, Toki H, Zhou S, Zhang S, Long W, Geng L (2006) Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys 57(2):470–563

    CAS  Google Scholar 

  14. Burvenich T, Rutz K, Bender M, Reinhard PG, Maruhn JA, Greiner W (1998) Superheavy nuclei in deformed mean-field calculations. Eur Phys J A 3:139–147

    CAS  Google Scholar 

  15. Cwiok S, Dobaczewski J, Heenen PH, Magierski P, Nazarewicz W (1996) Shell structure of the superheavy elements. Nucl Phys A 611(2–3):211–246

    Google Scholar 

  16. Mo Q, Liu M, Wang N (2014) Systematic study of shell gaps in nuclei. Phys Rev C 90:024320

    Google Scholar 

  17. Bao XJ, Guo SQ, Zhang HF, Li JQ (2017) Influence of proton shell closure on the evaporation residue cross sections of superheavy nuclei. J Phys G 44(4):045105

    Google Scholar 

  18. Naderi D, Alavi SA (2018) Influence of the shell effects on evaporation residue cross section of superheavy nuclei. Nucl Sci Tech 29:161

    Google Scholar 

  19. Adamyan GG, Antonenko NV, Bezbakh AN, Shneidman TM, Scheid W (2014) Impact of nuclear structure on production ofsuperheavy nuclei. J Phys Conf Ser 515(1):012002

  20. Zagrebaev V, Greiner W (2008) Synthesis of superheavy nuclei: a search for new production reactions. Phys Rev C 78:034610

    Google Scholar 

  21. Liu ZH, Bao JD (2011) Role of the coupling between neck and radial degrees of freedom in evolution from dinucleus to mononucleus. Phys Rev C 83:044613

    Google Scholar 

  22. Abe Y, Bouriguet B, Kosenko G, Shen C (2004) Theoretical predictions of residue cross sections for superheavy elements. Nucl Phys A 734(5):168–171

    Google Scholar 

  23. Hong J, Adamian GG, Antonenko NV (2016) Possibilities of production of transfermium nuclei in charged-particle evaporation channels. Phys Rev C 94:044606

    Google Scholar 

  24. Feng ZQ, Jin GM, Li JQ, Scheid W (2009) Production of heavy and superheavy nuclei in massive fusion reactions. Nucl Phys A 816(1):33–51

    Google Scholar 

  25. Loveland W (2015) An experimentalist’s view of the uncertainties in understanding heavy element synthesis. Eur Phys J A 51:120

    Google Scholar 

  26. Oganessian YT et al (1999) Synthesis of nuclei of the superheavy element 114 in reactions induced by 48Ca. Nature 400:242–245

    CAS  Google Scholar 

  27. Oganessian YT et al (2000) Synthesis of superheavy nuclei in the 48Ca + 244Pu reaction: 288114. Phys Rev C 62:041604(R)

    Google Scholar 

  28. Oganessian YT et al (2000) Observation of the decay of 292116. Phys Rev C 63:011301(R)

    Google Scholar 

  29. Oganessian YT et al (2004) Experiments on the synthesis of element 115 in the reaction 243Am(48Ca, xn)291-x115. Phys Rev C 69:021601(R)

    Google Scholar 

  30. Oganessian YT (2006) Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys Rev C 74:044602

    Google Scholar 

  31. Morita K et al (2004) Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn, n) 278113. J Phys Soc Jpn 73:2593–2596

    CAS  Google Scholar 

  32. Munzenberg G (1998) Synthesis and investigation of superheavy elements: perspectives on radioactive beams. Philos Trans R Soc Lond A 356(1744):2083–2104

    CAS  Google Scholar 

  33. Ghahramany N, Ansari A (2016) Synthesis and decay process of superheavy nuclei with Z = 119–122 via hot-fusion reactions. Eur Phys J A 52:287

    Google Scholar 

  34. Santhosh KP, Safoora V (2016) Systematic study of probable projectile-target combinations for the synthesis of the superheavy nucleus 302120. Phys Rev C 94:024623

    Google Scholar 

  35. Oganessian YT et al (2009) Attempt to produce element 120 in the 244Pu + 58Fe reaction. Phys Rev C 79:024603

    Google Scholar 

  36. Hofmann S et al (2016) Review of even element super-heavy nuclei and search for element. Eur Phys J A 52:180

    Google Scholar 

  37. Manjunatha HC, Sridhar KN (2017) Survival and compound nucleus probability of super heavy element Z = 117. Eur Phys J A 53:97

    Google Scholar 

  38. Manjunatha HC, Sridhar KN (2017) Projectile target combination to synthesis superheavy nuclei Z = 126. Nucl Phys A 962:7–23

    CAS  Google Scholar 

  39. Mandaglio G, Nasirov AK, Curciarello F, Leo VD, Romaniuk M, Fazio G, Giardina G (2012) Processes in massive nuclei reactions and the way to complete fusion of reactants. What perspectives for the synthesis of heavier superheavy elements? EPJ Web Conf 38:01001

  40. Prelas MA, Hora H, Miley GH (2014) Nucleus Z = 126 with magic neutron number N = 184 may be related to the measured Maruhn–Greiner maximum at A/2 = 155 from compound nuclei at low energy nuclear reactions. Phys Lett A 378(34):2467–2470

    CAS  Google Scholar 

  41. Manjunatha HC (2016) Alpha decay properties of superheavy nuclei Z = 126. Nucl Phys A 945:42–57

    CAS  Google Scholar 

  42. Meldner H (1967) Predictions of new magic regions and masses for super-heavy nuclei from calculations with realistic shell model single particle hamiltonians. Ark Fys 36:593–601

    Google Scholar 

  43. Myers WD, Swiatecki WJ (1966) Nuclear masses and deformations. Nucl Phys A 81(1):1–60

    CAS  Google Scholar 

  44. Nilsson SG, Nix JR, Sobiczewski A, Szymanski Z, Wycech S, Gustafson C, Möller P (1968) On the spontaneous fission of nuclei with Z near 114 and N near 184. Nucl Phys A 115(3):545–562

    CAS  Google Scholar 

  45. Mosel U, Greiner W (1969) On the stability of superheavy nuclei against fission. Z Phys A 222:261–282

    CAS  Google Scholar 

  46. Fiset EO, Nix JR (1972) Calculation of half-lives for superheavy nuclei. Nucl Phys A 193(2):647–671

    CAS  Google Scholar 

  47. Randrup J, Larsson SE, Moller P, Nilsson SG, Pomorski K, Sobiczewski A (1976) Spontaneous-fission half-lives for even nuclei with Z ≥ 92. Phys Rev C 13:229

    CAS  Google Scholar 

  48. Nhan Hao TV, Duy NN, Chae KY, Quang Hung N, Le Nhu N (2019) Investigation of the synthesis of the unknown superheavy nuclei 309,312126. Int J Mod Phys E 28(7):1950056

    CAS  Google Scholar 

  49. Koura H, Uno M, Tachibana T, Yamada M (2000) Nuclear mass formula with shell energies calculated by a new method. Nucl Phys A 674(1–2):47–76

    Google Scholar 

  50. Koura H (2014) Estimating fission-barrier height by the spherical-basis method. Prog Theor Exp Phys 2014:113D02

  51. Wong CY (1973) Interaction barrier in charged-particle nuclear reactions. Phys Rev Lett 31:766

    CAS  Google Scholar 

  52. Hill DL, Wheeler JA (1953) Nuclear constitution and the interpretation of fission phenomena. Phys Rev 89:1102–1145

    CAS  Google Scholar 

  53. Blocki J, Randrup J, Swiatecki WJ, Tsang CF (1977) Proximity forces. Ann Phys 105(2):427–462

    CAS  Google Scholar 

  54. Myers WD, Swiatecki WJ (2000) Nucleus–nucleus proximity potential and superheavy nuclei. Phys Rev C 62:044610

    Google Scholar 

  55. Denisov VY (2002) Interaction potential between heavy ions. Phys Lett B 526(3–4):315–321

    CAS  Google Scholar 

  56. Royer G, Rousseau R (2009) On the liquid drop model mass formulae and charge radii. Eur Phys J A 42:541–545

    CAS  Google Scholar 

  57. Bass R (1977) Nucleus–nucleus potential deduced from experimental fusion cross sections. Phys Rev Lett 39:265

    CAS  Google Scholar 

  58. Reisdorf W (1994) Heavy-ion reactions close to the Coulomb barrier. J Phys G 20(9):1297–1353

    CAS  Google Scholar 

  59. Winther A (1995) Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl Phys A 594(2):203–245

    Google Scholar 

  60. Gharaei R, Zanganeh V, Wang N (2018) Systematic study of proximity potentials for heavy-ion fusion cross sections. Nucl Phys A 979:237–250

    CAS  Google Scholar 

  61. Loveland W (2007) Synthesis of transactinide nuclei using radioactive beams. Phys Rev C 76:014612

    Google Scholar 

  62. Hassani S, Grange P (1984) Neutron multiplicities in fission viewed as a diffusion process. Phys Lett B 137(5–6):281–286

    Google Scholar 

  63. Bouriquet B, Abe Y, Boilley D (2004) KEWPIE: a dynamical cascade code for decaying exited compound nuclei. Comput Phys Commun 159:1–18

    CAS  Google Scholar 

  64. Weisskopf V (1937) Statistics and nuclear reactions. Phys Rev 52:295–303

    CAS  Google Scholar 

  65. Weisskopf V, Ewing DH (1940) On the yield of nuclear reactions with heavy elements. Phys Rev 57:472–485

    CAS  Google Scholar 

  66. Delagrange H, Gregoire C, Scheuter F, Abe Y (1986) Dynamical decay of nuclei at high temperature: competition between particle emission and fission decay. Z Phys A 323:437–449

    CAS  Google Scholar 

  67. Dostrovsky I, Fraenkel Z, Friedlander G (1959) Monte Carlo calculations of nuclear evaporation processes. III. Applications to low-energy reactions. Phys Rev 116:683–702

    CAS  Google Scholar 

  68. McMahan MA, Alexander JM (1980) Barrier to complete fusion for 4He and 1H and That for evaporation from 194Hg. Phys Rev C 21:1261

    CAS  Google Scholar 

  69. Bohr N, Wheeler JA (1939) The mechanism of nuclear fission. Phys Rev 56:426–450

    CAS  Google Scholar 

  70. Lü H, Marchix A, Abe Y, Boilley D (2016) KEWPIE2: a cascade code for the study of dynamical decay of excited nuclei. Commun Phys Commun 200:381–399

    Google Scholar 

  71. Quang Hung N, Dinh Dang N, Quynh Huong LT (2017) Phys Rev Lett 118:022502

  72. Quang Hung N, Dinh Dang N, Moretto LG (2019) Pairing in excited nuclei: a review. Rep Prog Phys 82(5):056301

    Google Scholar 

  73. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):284–304

    CAS  Google Scholar 

  74. Strutinsky VM (1973) The fission width of excited nuclei. Phys Lett 47:121–123

    Google Scholar 

  75. Abe Y, Ayik S, Reinhard P-G, Suraud E (1996) On stochastic approaches of nuclear dynamics. Phys Rep 275:49–196

    CAS  Google Scholar 

  76. Gilbert A, Cameron AGW (1965) A composite nuclear-level density formula with shell corrections. Can J Phys 43(8):1446–1496

    CAS  Google Scholar 

  77. Bass R (1974) Fusion of heavy nuclei in a classical model. Nucl Phys A 231(1):45–63

    Google Scholar 

  78. du Rietz R, Williams E, Hinde DJ, Dasgupta M, Evers M, Lin CJ, Luong DH, Simenel C, Wakhle A (2013) Mapping quasifission characteristics and timescales in heavy element formation reactions. Phys Rev C 88:054618

    Google Scholar 

  79. Blocki JP, Feldmeier H, Swiatecki WJ (1986) Dynamical hindrance to compound-nucleus formation in heavy-ion reactions. Nucl Phys A 459(1):145–172

    Google Scholar 

  80. Itkis MG, Vardaci E, Itkis IM, Knyazheva GN, Kozulin EM (2015) Fusion and fission of heavy and superheavy nuclei (experiment). Nucl Phys A 944:204–237

    CAS  Google Scholar 

  81. Abe H (1986) KEK Preprint 8-26, KEK TH-128

  82. Nishio K et al (2015) Fission Study Of Actinide Nuclei Using Multi-Nucleon Transfer Reactions. Phys Proc 64:140–144

    CAS  Google Scholar 

  83. Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S (2012) Fusion probabilities in the reactions 40,48Ca + 238U at energies around the Coulomb barrier. Phys Rev C 86:034608

    Google Scholar 

  84. Nishio K et al (2010) Nuclear orientation in the reaction 34S + 238U and synthesis of the new isotope 268Hs. Phys Rev C 82:024611

    Google Scholar 

  85. Lu H, Boilley D, Abe Y, Shen C (2016) Synthesis of superheavy elements: uncertainty analysis to improve the predictive power of reaction models. Phys Rev C 94:034616

    Google Scholar 

  86. Baran A, Kowal M, Reinhard P-G, Robledo LM, Staszczak A, Warda M (2015) Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100. Nucl Phys A 944:442–470

    CAS  Google Scholar 

  87. Itkis MG, Ts Yu, Oganessian Ts, Zagrebaev VI (2002) Fission barriers of superheavy nuclei. Phys Rev C 65:044602

    Google Scholar 

  88. Zagrebaev VI, Aritomo Y, Itkis MG, Ts Yu, Oganessian M Ohta (2002) Synthesis of superheavy nuclei: how accurately can we describe it and calculate the cross sections? Phys Rev C 65:014607

    Google Scholar 

  89. Zagrebaev VI, Greiner W (2015) Cross sections for the production of superheavy nuclei. Nucl Phys A 944:257–307

    CAS  Google Scholar 

  90. Möller P, Sierk AJ, Ichikawa T, Sagawa H (2016) Nuclear ground-state masses and deformations: FRDM(2012). At Data Nucl Data Tab 109–110:1–203

    Google Scholar 

  91. Koura H, Uno M, Tachibana T, Yamada M (2000) Nuclear mass formula with shell energies calculated by a new method. Nucl Phys A 674:47–76; KTUY Mass Formula. https://wwwndc.jaea.go.jp/nucldata/mass/KTUY04_E.html. Accessed 20 Aug 2020

  92. Anuar NLM, Aritomo Y, Tanaka S, Yanagi B (2019) Evaluation for possibility of synthesizing new superheavy elements. DOI, Exotic Nuclei. https://doi.org/10.1142/9789811209451_0033

    Book  Google Scholar 

  93. Borges AM, da Silva CP, Pereira D, Chamon LC, Rossi ES Jr, Aguiar CE (1992) Pair transfer and the sub-barrier fusion of 18O + 58Ni. Phys Rev C 46:2360

    CAS  Google Scholar 

  94. Zagrebaev VI (2003) Sub-barrier fusion enhancement due to neutron transfer. Phys Rev C 67:061601(R)

    Google Scholar 

  95. Hong J, Adamian GG, Antonenko NV (2016) Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers Z > 108 in asymmetric actinide-based complete fusion reactions. Eur Phys J A 52:305

    CAS  Google Scholar 

  96. Oganessian Y (2007) Heaviest nuclei from 48Ca-induced reactions. J Phys G 34:R165–R242

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) Grants funded by the Korea government (MEST) (Nos. NRF-2020R1C1C1006029, NRF-2017R1D1A1B03030019, NRF-2020R1A2C1005981 and NRF-2016R1A5A1013277). This work is also supported by Vietnam Ministry of Science and Technology (MOST) under the Program of Development in Physics toward 2020 (Grant No. DTDLCN.02/19) and National Foundation for Science and Technology Development (NAFOSTED) of Vietnam (Grant No. 103.04-2018.303). The author T. V. Nhan Hao (tvnhao@hueuni.edu.vn) thanks to the financial support of the Nuclear Physics Research Group (NP@HU) at Hue University (Grant No. 43/HD-DHH).

Author information

Authors and Affiliations

Authors

Contributions

NNL: Calculations, data analysis, and writing the first draft of the manuscript. NQH: level density analysis, checking computer code, and editting manuscript. TVNH and LTP: supporting data analysis and double-checked all the numerical calculations. NDL: quantitive evaluations of fission barriers to explain the large cross sections and participating manuscript revision. KYC: supporting theoretical framework design and discussions on results. NND: Conceptualization, data analysis, discussions, writing the manuscript, and responsibility for the study. Comments and discussions on the manuscripts were done by all of the authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nguyen Ngoc Duy.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, N.N., Hung, N.Q., Hao, T.V.N. et al. Possible syntheses of unknown superheavy 309,312126 nuclei. J Radioanal Nucl Chem 326, 1135–1149 (2020). https://doi.org/10.1007/s10967-020-07379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07379-z

Keywords

Navigation