Skip to main content
Log in

Correlation between radon release, radioactivity and mineralogy: a case study of Estonian black sands

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The growing attention to naturally occurring radionuclides in building materials has a significant societal impact. This impact is apparent in recent research studies and the latest European Council directives, where reference levels for indoor radon concentrations and gamma radiation levels are reported. This paper studies black sand samples from the Estonian coast, mainly from Kihnu island. The results are discussed from various aspects to determine if utilization of these sands as a building material component is viable. For this reason, this paper focuses on the mineralogical and radiological characterization of these samples with special attention to radon emanation and exhalation. Furthermore, a detailed correlation study of mineralogical components against emanation and exhalation factors and the levels of 226Ra, 232Th and 40K was performed. It is found that the sand samples are composed of very high heavy mineral content as compared to the rest of Estonia; the black sands studied here include a heavy fraction dominated by garnets and a light fraction characterized by quartz and feldspars. The analysis also indicates that the higher 232Th and 226Ra content in the samples is correlated with an increase in zircon, ore minerals and garnets; on the other hand, the 40K content is connected to amphiboles. A strong correlation was also found between the 226Ra activity concentration and the measured massic exhalation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeeb H, Shannoun F, World Health Organization (2009) WHO handbook on indoor radon: a public health perspective. World Health Organization. https://apps.who.int/iris/handle/10665/44149. Accessed 11 July 2020

  2. Durrani SA, Ilic R (eds) (1997) Radon measurements by etched track detectors: application to radiation protection, earth sciences and the environment. World Scientific, Singapore

    Google Scholar 

  3. Krane KS (1988) Introductory nuclear physics. Wiley, New York

    Google Scholar 

  4. Abumurad KM, Al-Bataina B, Ismail A, Kullab M, Al-Eloosy A (1997) A survey of radon levels in Jordanian dwellings during an autumn season. Radiat Prot Dosim 69:221–226

    Article  CAS  Google Scholar 

  5. United Nations Scientific Committee on the Effects of Atomic Radiation (2010) ANNEX B: exposures of the public and workers from various sources of radiation, UNSCEAR 2008 Report to the general assembly with scientific annexes, United Nations, New York

  6. NCRP (1984) Exposures from the uranium series with emphasis on radon and its daughters. NCRP report no. 77, NCRP, Bethesda, MD

  7. Carvalho C, Anjos RM, Veiga R, Macario K (2011) Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. J Environ Radioact 102:185–192

    Article  CAS  Google Scholar 

  8. Hazin CA, Farias EEGDE, Gazineu MHP (2008) Uranium and thorium in zircon sands processed in Northeastern Brazil. In: IRPA 12: 12 international congress of the international radiation protection association (IRPA): strengthening radiation protection worldwide. Argentina, SAR

  9. Fares S (2017) Measurements of natural radioactivity level in black sand and sediment samples of the Temsah Lake beach in Suez Canal region in Egypt. J Radiat Res Appl Sci 10:194–203

    Article  CAS  Google Scholar 

  10. Peev TM, Mitov IG (1999) Some investigations of sea sands from the Black Sea coastline. J Radioanal Nucl Chem 241(1):169–172. https://doi.org/10.1007/bf02347305

    Article  CAS  Google Scholar 

  11. Järvelill J-I, Koch R, Raukas A, Vaasma T (2018) Hazardous radioactivity levels and heavy mineral concentrations in beach sediments of Lake Peipsi, northeastern Estonia. Geologos 24(1):1–12

    Article  Google Scholar 

  12. Raukas A, Koch R, Jüriado K, Järvelill J-I (2014) Anomalous radioactivity level and high concentrations of heavy minerals in Lemme area, South-West Estonia. Baltica 2:93–104

    Article  Google Scholar 

  13. Sorby HC (1908) On the application of quantitative methods to the study of structure and history of rocks. Q J Geol Soc Lond 64:671–733

    Article  Google Scholar 

  14. Ishimori Y, Lange K, Martin P, Mayya Y, Phaneuf M (2013) Technical reports series no. 474 measurement and calculation of radon releases from NORM residues. International Atomic Energy Agency IAEA, Vienna

  15. Kiirguskeskus Kiirgus (2006) inimesed ja keskkond. Mixi Kirjastus OÜ, Tallinn (in Estonian)

    Google Scholar 

  16. Turtiainen T (2016) “Radoon ja tervis” Radooni aktiivsuskonsentratsiooni mõõtmine, Tallinn (in Estonian)

  17. Järvelill J-I, Kleesment A, Raukas A (2015) Accumulation of heavy minerals in the eastern coast of the Gulf of Riga, south-western Estonia. Bull Geol Soc Finl 87:67–78. https://doi.org/10.17741/bgsf/87.2.002

    Article  Google Scholar 

  18. Järvelill J-I, Kallaste T, Kleesment A, Pajusaar S, Raukas A (2019) Provenance of heavy minerals in the Quaternary deposits of the Lemme outcrop, Estonia, based on optical microscopy, X-ray diffractometry and scanning electron microscope microanalysis. Estonian J Earth Sci 68(2):76–87

    Article  Google Scholar 

  19. Marcinkowski B, Mycielska-Dowgiałło E (2013) Heavy-mineral analysis in Polish investigations of quaternary deposits: a review. Geologos 19:5–23. https://doi.org/10.2478/logos-2013-0002

    Article  Google Scholar 

  20. Larsen ES, Berman H (1934) The microscopic determination of the nonopaque minerals, vol 848, 2nd edn. Geological Survey Bulletin, California

    Google Scholar 

  21. Stoiber RE, Morse SA (1994) Crystal identification with the polarizing microscope. Chapman & Hall, London, p 358p

    Book  Google Scholar 

  22. Koch R (2006) The radioactivity of black sand of Estonian shore of the Baltic Sea. In: Ikäheimonen TK (ed) STUK-A217: Ympäriston radioaktiivisuus Suomessa—20 vuotta Tshernobylista; Helsinki; 25–26 April, 2006. Dark Oy, Vantaa, pp 165–168 (in Finnish)

    Google Scholar 

  23. De Meijer RJ, James IR, Jennings PJ, Koeyers JE (2001) Cluster analysis of radionuclide concentrations in beach sand. Appl Radiat Isot 54:535–542

    Article  Google Scholar 

  24. Intenational Atomic Energy Agency (2004) Quantifying uncertainty in nuclear analytical measurements, IAEA-TECDOC-1401, IAEA, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1401_web.pdf. Accessed 11 July 2020

  25. Beretka J, Mathew PJ (1985) Natural radioactivity of australian building materials, industrial wastes and by-products. Health Phys 48:87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  Google Scholar 

  26. European Commission, Radiological protection principles concerning the natural radioactivity of building materials, European Commission, Luxemburg (1999). https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf. Accessed 11 July 2020

  27. European Union, Council Directive 2013/29/Euratom (2013) https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0059&from=EN. Accessed 11 July 2020

  28. Jónás J, Sas Z, Vaupotic J, Kocsis E, Somlai J, Kovács T (2016) Thoron emanation and exhalation of Slovenian soils determined by a PIC detector-equipped radon monitor. Nukleonika 61:379–384. https://doi.org/10.1515/nuka-2016-0063

    Article  CAS  Google Scholar 

  29. Sas Z, Szanto J, Kovács J, Somlai J, Kovács T (2015) Influencing effect of heat-treatment on radon emanation and exhalation characteristic of red mud. J Environ Radioact 148:27–32. https://doi.org/10.1016/j.jenvrad.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  30. International Atomic Energy Agency (2013) Measurement and calculation of radon releases from NORM residues. International Atomic Energy Agency, Vienna. http://www-pub.iaea.org/books/IAEABooks/10369/Measurement-and-Calculation-of-Radon-Releases-from-NORM-Residues. Accessed 11 July 2020

  31. Lutt J, Popova L (1993) Mineral composition of bottom sediments. In: Lutt J, Raukas A (eds) Geology of the Estonian shelf. Estonian Geological Society, Tallinn, pp 117–138 (in Estonian with English summary)

    Google Scholar 

  32. Sas Z, Doherty R, Kovács T, Soutsos M, Sha W, Schroeyers W (2017) Radiological evaluation of by-products used in construction and alternative applications; part I. Preparation of a natural radioactivity database. Constr Build Mater 150:227–237. https://doi.org/10.1016/j.conbuildmat.2017.05.167

    Article  CAS  Google Scholar 

  33. United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR (1982) Report to the general assembly with scientific annexes. UNSCEAR, New York, p 1982

    Google Scholar 

  34. Sas Z, Somlai J, Jonas J, Szeiler G, Kovács T, Gyongyosi C, Sydo T (2013) Radiological survey of Hungarian clays; radon emanation and exhalation influential effect of sample and internal structure conditions. Rom Rep Phys 58:243–250

    Google Scholar 

  35. Hegedus M, Sas Z, Toth-Bodrogi E, Szanto T, Somlai J, Kovács T (2016) Radiological characterization of clay mixed red mud in particular as regards its leaching features. J Environ Radioact 162–163:1–7. https://doi.org/10.1016/j.jenvrad.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  36. Sas Z, Kardos R, Szanto J, Shahrokhi A, Somlai J, Kovács T (2014) Natural radionuclide content of NORM by-products originated from coal fired power plant. In: The 9th international symposium on the natural radiation environment (NRE-IX) Hirosaki, Japan

  37. Ignjatović I, Sas Z, Dragaš J, Somlai J, Kovács T (2016) Radiological and material characterization of high volume fly ash concrete. J Environ Radioact 168:38–45. https://doi.org/10.1016/j.jenvrad.2016.06.021

    Article  CAS  PubMed  Google Scholar 

  38. Kovács T, Szeiler G, Fábián F, Kardos R, Gregorič A, Vaupotič J (2013) Systematic survey of natural radioactivity of soil in Slovenia. J Environ Radioact 122:70–78. https://doi.org/10.1016/J.JENVRAD.2013.02.007

    Article  PubMed  Google Scholar 

  39. Kovács T, Shahrokhi A, Sas Z, Vigh T, Somlai J (2016) Radon exhalation study of manganese clay residue and usability in brick production. J Environ Radioact 168:15–20. https://doi.org/10.1016/j.jenvrad.2016.07.014

    Article  CAS  PubMed  Google Scholar 

  40. Evans JD (1996)Straightforward statistics for the behavioral sciences. Brooks/Cole Publishing Company. https://books.google.be/books?id=8Ca2AAAAIAAJ. Accessed 11 July 2020

  41. Seddeek MK, Badran HM, Sharshar T, Elnimr T (2005) Characteristics, spatial distribution and vertical profile of gamma-ray emitting radionuclides in the coastal environment of North Sinai. J Environ Radioact 84:21–50

    Article  CAS  Google Scholar 

  42. Raslan MF, Ali MA, El-Feky MG (2010) Mineralogy and radioactivity of pegmatites from South Wadi Khuda area, Eastern Desert, Egypt. Chin J Geochem 29:343–354. https://doi.org/10.1007/s11631-010-0466-2R

    Article  CAS  Google Scholar 

  43. Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM (1999) The 226Ra, 232Th and 40 K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. J Environ Radioact 46:243–250

    Article  CAS  Google Scholar 

  44. De Meijer RJ (1998) Heavy minerals: from ‘Edelstein’ to Einstein. J Geochem Expl 62:81–103

    Article  Google Scholar 

  45. Sakoda A, Hanamoto K, Ishimori Y, Nagamatsu T, Yamaoka K (2008) Radioactivity and radon emanation fraction of the granites sampled at Misasa and Badgastein. Appl Radiat Isot 66:648–652

    Article  CAS  Google Scholar 

  46. Sakoda A, Nishiyama Y, Hanamoto K, Ishimori Y, Yamamoto Y, Kataoka T, Kawabe A, Yamaoka K (2010) Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil. Appl Radiat Isot 68:1180–1184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by STSM Grants from the COST Action TU1301, and the authors would like to acknowledge networking support by the COST Action TU1301 (“NORM for Building Materials”, www.norm4building.org). Results incorporated in this paper have received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 701932. The authors gratefully thank Mr. Kalev Järvelill for his help with field sampling procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Tkaczyk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkaczyk, A.H., Koch, R., Ipbüker, C. et al. Correlation between radon release, radioactivity and mineralogy: a case study of Estonian black sands. J Radioanal Nucl Chem 326, 75–86 (2020). https://doi.org/10.1007/s10967-020-07290-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07290-7

Keywords

Navigation