Skip to main content
Log in

Ensuring the analysis accuracy by ICP-MS method using radioactive and highly-enriched stable isotope tracers and gamma-ray spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To increase the accuracy of the analysis of silicon and rock samples by the inductively coupled plasma mass spectrometry, it is proposed to use both highly-enriched stable and short-lived radioactive isotopes with high specific radioactivity obtained in nuclear reactor to control the yield of elements on decomposition. Autoclave decomposition method for silicon and rock samples is proposed. Non-purified silicon sample irradiated in a nuclear reactor was used for testing of element recoveries during sample decomposition. Analysis of granite and black shale reference rock samples has been done using the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gorbatenko AA, Revina EI (2015) A review of instrumental methods for determination of rare earth elements. Inorg Mater 51(14):1375–1388. https://doi.org/10.1134/S0020168515140058

    Article  CAS  Google Scholar 

  2. D’Orazio M (1999) Boron determination in twenty one silicate rock reference materials by isotope dilution ICP-MS. Geostand Newslet 23(1):21–29. https://doi.org/10.1111/j.1751-908X.1999.tb00556.x

    Article  Google Scholar 

  3. Baker J, Waight T, Ulfbeck D (2002) Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry. Geochim Cosmochim Acta 66(20):3635–3646. https://doi.org/10.1016/S0016-7037(02)00921-3

    Article  CAS  Google Scholar 

  4. Savard D, Barnes S-J, Meisel T (2010) Comparison between nickel-sulfur fire assay Te co-precipitation and isotope dilution with high-pressure asher acid digestion for the determination of platinum-group elements, rhenium and gold. Geostand Geoanal Res 34:281–291. https://doi.org/10.1111/j.1751-908X.2010.00090.x

    Article  CAS  Google Scholar 

  5. Pin C, Le Fe`vre B (2002) Isotope dilution with matrix element removal: a key for high-precision, high-accuracy trace analysis of geological samples using inductively coupled plasma-mass spectrometry. Geostand Newsl 26:135–148

    Article  CAS  Google Scholar 

  6. Heumann KG (2004) Isotope-dilution ICP–MS for trace element determination and speciation: from a reference method to a routine method? Anal Bioanal Chem 378:318–329. https://doi.org/10.1007/s00216-003-2325-z

    Article  CAS  PubMed  Google Scholar 

  7. Vogl J (2007) Characterisation of reference materials by isotope dilution mass spectrometry. J Anal At Spectrom 22:475–492. https://doi.org/10.1039/b614612k

    Article  CAS  Google Scholar 

  8. Karandashev VK, Khvostikov VA, Nosenko SV, Burmii ZhP (2017) Stable highly enriched isotopes in routine analysis of rocks, soils, grounds, and sediments by ICP-MS. Inorg Mater 53(14):1432–1441. https://doi.org/10.1134/S0020168517140084

    Article  CAS  Google Scholar 

  9. Khvostikov VA, Karandashev VK, Orlova VA (2016) Autoclave sample digestion system for elemental analysis. Russian patent No. 2599526

  10. Dobizha EV, Krasilshchik VZ, Sokolskaya NN, Chupakhin MS (1981) Autoclave digestion of silicon dioxide for elemental analysis for subsequent spectral analysis. J Analyt Chem 36(10):1939–1944

    CAS  Google Scholar 

  11. Pimenov VG, Gayvoronsky PE, Shishov VN, Maksimov GA (1984) Decrease in the level of pollution background in the chemical-spectral analysis of quartz glass by means of autoclave decomposition of the sample in the electrode directly. J Analyt Chem 39(6):1072–1075

    CAS  Google Scholar 

  12. Orlova VA (2001) Autoclave sample preparation in chemical analysis. Thesis of Doctor of Chemical Sciences, Moscow

    Google Scholar 

  13. Ueng R-L, Jiang S-J, Wan C-C, Sahayam AC (2005) Microwave-assisted volatilization of silicon fluorides for the determination of trace impurities in high purity silicon powder and quartz by ICP-MS. Anal Chim Acta 536:295–299. https://doi.org/10.1016/j.aca.2004.12.040

    Article  CAS  Google Scholar 

  14. Surikov VT (2008) Acid dissolution of silicon and its compounds for analysis by inductively coupled plasma mass-spectrometry. Analitika i kontrol 12:93–100

    Google Scholar 

  15. Shelpakova IR, Shaverina AV (2011) Determination of impurities in silicon (review). Analitika i control 15(2):141–149

    Google Scholar 

  16. Shaverina AV, Tsygankova AR, Saprykin AI (2015) A Procedure of ICP-AES analysis of silicon using microwave digestion and preconcentration. J Anal Chem 70(1):28–31. https://doi.org/10.1134/S1061934815010153

    Article  CAS  Google Scholar 

  17. Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride—and chloride-bearing aqueous solutions at temperatures up to 300ºC. Geochim Cosmochim Acta 73:7087–7109. https://doi.org/10.1016/j.gca.2009.08.023

    Article  CAS  Google Scholar 

  18. Yokoyama T, Makishima A, Nakamura E (1999) Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chem Geol 157:175–187

    Article  CAS  Google Scholar 

  19. Takei H, Yokoyama T, Makishima A, Nakamura E (2001) Formation and suppression of A1F3 during HF digestion of rock samples in teflon bomb for precise trace element nalyses by ICP-MS and ID-TIMS. Proc Jpn Acad Ser B 77:13–17. https://doi.org/10.2183/pjab.77.13

    Article  Google Scholar 

  20. Cotta AJB, Enzweiler J (2011) Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS. Geostand and Geoanal Res 36:27–50. https://doi.org/10.1111/j.1751-908X.2011.00115.x

    Article  CAS  Google Scholar 

  21. Certificate of Analysis Granodiorite, Silver Plume, Colorado, GSP-2. https://hybris-static-assets-production.s3-eu-west-1.amazonaws.com/sys-master/pdfs/h74/hb3/9872367222814/en_ST-WB-CERT-1833516-1-1-1.PDF

  22. Certificate of Analysis of Granite (Russia, GSO 3333–85). https://www.igc.irk.ru/ru/component/flexicontent/item/3421-standartnyj-obrazets-sostava-shchelochnogo-agpaitovogo-granita?Itemid=746

  23. Certificate of Analysis of Black Shale SLg-1 (Sukhoi Log ore, Russia, GSO 8550–04). https://www.igc.irk.ru/ru/component/flexicontent/item/3428-standartnyj-obrazets-sostava-chernogo-slantsa-3428?Itemid=746

  24. Weyer S, Münker C, Rehkämper M, Mezger K (2002) Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chem Geol 187:295–313. https://doi.org/10.1016/S0009-2541(02)00129-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by a joint grant of RFBR and the Agency for science and technology of the Republic of Uzbekistan No. 18-53-41007 Uzb_t.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilii K. Karandashev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karandashev, V.K., Kolotov, V.P. & Sadikov, I.I. Ensuring the analysis accuracy by ICP-MS method using radioactive and highly-enriched stable isotope tracers and gamma-ray spectrometry. J Radioanal Nucl Chem 325, 847–856 (2020). https://doi.org/10.1007/s10967-020-07220-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07220-7

Keywords

Navigation