Skip to main content
Log in

Influence of silica fume on radioactive fluoride concentrate liquid waste solidified by magnesium potassium phosphate cement

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper investigated the influence of silica fume on radioactive fluoride concentrate liquid waste cementation with magnesium potassium phosphate cement (MKPC). The results showed that when the silica fume mass fraction increased from 0 to 20%, the setting time and fluidity of the MKPC slurry decreased, while the 28-day compressive strength of the solidified form increased. The main hydration products were MgKPO4·6H2O and magnesium silicate hydrate (M–S–H). Silica fume had good physical adsorption of cesium, whose 42-day cumulative leaching fraction decreased from 0.083 ± 0.003 to 0.044 ± 0.002 cm. The formation of magnesium fluosilicate and its hydrate led to a decrease of fluorine leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun Y-P, Xia X-B, Qiao Y-b et al (2016) Properties of phosphate glass waste forms containing fluorides from a molten salt reactor. J Nucl Sci Technol 27(3):89–95

    Google Scholar 

  2. Siemer DD (2014) Molten salt breeder reactor waste management. Nucl Technol 185(1):100–108

    Article  CAS  Google Scholar 

  3. Wagh AS, Jeong SY (2003) Chemically bonded phosphate ceramics: I, A dissolution model of formation. J Am Ceram Soc 86(11):1838–1844

    Article  CAS  Google Scholar 

  4. Rouzic ML, Chaussadent T et al (2017) Mechanisms of k-struvite formation in magnesium phosphate cements. Cem Concr Res 91:117–122

    Article  CAS  Google Scholar 

  5. Soudée E, Péra J (2000) Mechanism of setting reaction in magnesia phosphate cements. Cem Concr Res 30(2):315–321

    Article  Google Scholar 

  6. Yang Q-B, Xue-li Wu (1999) Factors influencing properties of phosphate cement-based binder for rapid repair of concrete. Cem Concr Res 29(3):389–396

    Article  CAS  Google Scholar 

  7. Wagh AS, Strain R, Jeong SY et al (1999) Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics. J Nucl Mater 265:295–307

    Article  CAS  Google Scholar 

  8. Vinokurov SE, Kulikova SA, Myasoedov BF (2018) Hydrolytic and thermal stability of magnesium potassium phosphate compound for immobilization of high level waste. J Radioanal Nucl Chem 318:2401–2405

    Article  CAS  Google Scholar 

  9. Vinokurov SE, Kulikova SA, Krupskaya VV, Myasoedov BF (2018) Magnesium potassium phosphate compound for radioactive waste immobilization: phase composition, structure, and physicochemical and hydrolytic durability. Radiochemistry 60:70–78

    Article  CAS  Google Scholar 

  10. Covill A, Hyatt NC, Hill J et al (2011) Development of magnesium phosphate cements for encapsulation of radioactive waste. Adv Appl Ceram 110(3):151–156

    Article  CAS  Google Scholar 

  11. Buj I, Torras J et al (2010) Leaching behavior of magnesium phosphate cements containing high quantities of heavy metals. J Hazard Mater 175(1):789–794

    Article  CAS  PubMed  Google Scholar 

  12. Cantrell KJ, Um W et al (2014) Chemical stabilization of Hanford tank residual waste. J Nucl Mater 446:246–256

    Article  CAS  Google Scholar 

  13. Mao M, Wang Z, Jia X-W (2012) Researching on water resistance improvement of magnesium phosphate cement. Non-Metallic Mines 35(6):1–3

    CAS  Google Scholar 

  14. Huang Y-X, Qian J-S, Wang Q-Z et al (2011) Influence of fly ash on water resistance of magnesia phosphate cement. Mater Rev 25(1):470–473

    Google Scholar 

  15. Zheng D-D, Ji T, Wang C-Q (2016) Effect of the combination of fly ash and silica fume on water resistance of Magnesium–Potassium Phosphate Cement. Constr Build Mater 106:415–421

    Article  CAS  Google Scholar 

  16. Chen B, Zhen Wu, Xue-ping Wu (2011) Experimental research on the properties of modified MPC. J Wuhan Univ Technol 33(4):29–34

    Google Scholar 

  17. Fei Qiao CK, Chau Z-J (2012) Calorimetric study of magnesium potassium phosphate cement. Mater Struct 45(3):447–456

    Article  CAS  Google Scholar 

  18. Ma H-Y, Bi-wan Xu (2017) Potential to design magnesium potassium phosphate cement paste based on an optimal magnesia-to-phosphate ratio. Mater Des 118:81–88

    Article  CAS  Google Scholar 

  19. Lai Z-y, Lai X-C, Shi J-B et al (2016) Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement. Constr Build Mater 129:70–78

    Article  CAS  Google Scholar 

  20. Qian Z-H, Liu X-Y, Qiao Y-b et al (2019) Effect of fluorine on stabilization/solidification of radioactive fluoride liquid waste in magnesium potassium phosphate cement. J Radioanal Nucl Chem 319:393–399

    Article  CAS  Google Scholar 

  21. Sarkar AK (1991) Hydration\dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement system. J Mater Sci 26:2514–2518

    Article  CAS  Google Scholar 

  22. Zhang T, Cheeseman CR, Vandeperre LJ (2011) Development of low pH cement systems forming magnesium silicate hydrate (MSH). Cem Concr Res. 41(4):439–442

    Article  CAS  Google Scholar 

  23. Bernard E, Lothenbach B, Chlique C et al (2019) Characterization of magnesium silicate hydrate (M–S–H). Cem Concr Res 116:309–330

    Article  CAS  Google Scholar 

  24. Zhang T-T, Zou J, Wang B-M et al (2018) Characterization of magnesium silicate hydrate (MSH) gel formed by reacting mgo and silica fume. Materials 11:909

    Article  CAS  PubMed Central  Google Scholar 

  25. Ting-ting Zhang LJ, Vandeperre CR, Cheeseman, (2014) Formation of magnesium silicate hydrate (M–S–H) cement pastes using sodium hexametaphosphate. Cem Concr Res 65:8–14

    Article  CAS  Google Scholar 

  26. GB/T 7023-2011 (2011) Standard test method for leachability of low and intermediate level solidified radioactive waste forms. Chinese standard

  27. Asabina EA, Zaripov AR, Petkov VI et al (2008) Thermodynamic properties of caesium-magnesium monophosphate. J Chem Thermodyn 40(4):653–660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by “Young Potential Program of Shanghai Institute of Applied Physics, Chinese Academy of Sciences” (Y955031031) and “Shanghai Sailing Program” (19YF1458100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-bo Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Zh., Yu, Bw., Zhou, S. et al. Influence of silica fume on radioactive fluoride concentrate liquid waste solidified by magnesium potassium phosphate cement. J Radioanal Nucl Chem 324, 1013–1019 (2020). https://doi.org/10.1007/s10967-020-07151-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07151-3

Keywords

Navigation