Skip to main content
Log in

Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we studied the features of stable and radioactive Cs(I), Sr(II) and Co(II) ions sorption on Ti–Ca–Mg phosphates. The significant differences in the sorption of macro quantities of stable Cs+, Sr2+ and Co2+ ions and trace concentrations of 137Cs, 90Sr and 60Co radionuclides were found. It has to be taken into account for evaluation the effectiveness of sorbents for the treatment of real liquid radioactive waste. Comparative studies with industrial sorbents have shown that the synthesized in this study mixed Ti–Ca–Mg phosphates are promising materials for one-stage treatment of liquid radioactive waste with complex chemical and radionuclide composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA 108(49):19530–19534. https://doi.org/10.1073/pnas.1112058108

    Article  PubMed  Google Scholar 

  2. Mertz JL, Fard ZH, Malliakas CD, Manos MJ, Kanatzidis MG (2013) Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x = 0.5-1) (KMS-2) relevant to nuclear waste remediation. Chem Mater 25(10):2116–2127. https://doi.org/10.1021/cm400699r

    Article  CAS  Google Scholar 

  3. Aguila B, Banerjee D, Nie ZM, Shin Y, Ma SQ, Thallapally PK (2016) Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chem Commun 52(35):5940–5942. https://doi.org/10.1039/c6cc00843g

    Article  CAS  Google Scholar 

  4. Ivanets AI, Shashkova IL, Kitikova NV, Drozdova NV (2014) Extraction of Co(II) ions from aqueous solutions with thermally activated dolomite. Russ J Appl Chem 87:270–275. https://doi.org/10.1134/S1066362214050129

    Article  CAS  Google Scholar 

  5. Abdel-Rahman RO, El-Kamash AM, Ali HF, Hong YT (2011) Overview on recent trends and developments in radioactive liquid waste treatment. Part 1: sorption/ion exchange technique. Int J Environ Eng Sci 2:1–16

    Google Scholar 

  6. Narbutt J, Bilewicz A, Bartoś B (1994) Composite ion exchangers. Prospective nuclear applications. J Radioanal Nucl Chem 183:27–32. https://doi.org/10.1007/BF02043113

    Article  CAS  Google Scholar 

  7. Bilewicz A, Narbutt J (2001) α-Crystalline polyantimonic acid: an adsorbent for radiostrontium, and a potential primary barrier in waste repositories. Radiochim Acta 89:783–784. https://doi.org/10.1524/ract.2001.89.11-12.783

    Article  CAS  Google Scholar 

  8. Chon K, Kim SJ, Moon J, Cho J (2012) Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant. Water Res 46(6):1803–1816. https://doi.org/10.1016/j.watres.2011.12.062

    Article  CAS  PubMed  Google Scholar 

  9. Montaña M, Camacho A, Serrano I, Devesa R, Matia L, Vallés I (2013) Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J Environ Radioact 125:86–92. https://doi.org/10.1016/j.jenvrad.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  10. Rat’ko AI, Ivanets AI, Sakhar IO, Davydov DYu, Toropova VV, Radkevich AV (2011) A sorbent based on natural dolomite for recovery of cobalt radionuclides. Radiochemistry. https://doi.org/10.1134/S1066362211060105

    Article  Google Scholar 

  11. Mou J, Wang G, Shi W, Zhang S (2012) Sorption of radiocobalt on a novel γ-MnO2 hollow structure: effects of pH, ionic strength, humic substances and temperature. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-011-1408-0

    Article  Google Scholar 

  12. Kitikova NV, Ivanets AI, Shashkova IL, Radkevich AV, Shemet LV, Kul’bitskaya LV, Sillanpää M (2017) Batch study of 85Sr adsorption from synthetic seawater solutions using phosphate sorbents. J Radioanal Nucl Chem 314(3):2437–2447. https://doi.org/10.1007/s10967-017-5592-4

    Article  CAS  Google Scholar 

  13. Rashad GM, Mahmoud MR, Elewa AM, Metwally E, Saad EA (2016) Removal of radiocobalt from aqueous solutions by adsorption onto low-cost adsorbents. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-016-4726-4

    Article  Google Scholar 

  14. Ryabchikov BE (2008) Decontamination of liquid radioactive wastes. De Li, Moscow

    Google Scholar 

  15. Shashkova IL, Ivanets AI, Kitikova NV (2019) Sorption of Co2+, Pb2+, and Sr2+ ions on hydroxyapatite, synthesized in the presence of oxyethylidenediphosphonic acid. Russ J Appl Chem 92(5):625–633. https://doi.org/10.1134/S1070427219050070

    Article  CAS  Google Scholar 

  16. Milenkovic AS, Smiciklas ID, Sljivic-Ivanovic MZ, Zivkovic LS, Vukelic NS (2016) Effect of experimental variables onto Co2+ and Sr2+ sorption behavior in red mud-water suspensions. J Environ Sci Health A. https://doi.org/10.1080/10934529.2016.1159884

    Article  Google Scholar 

  17. Shashkova IL, Ivanets AI, Kitikova NV, Sillanpää M (2017) Effect of phase composition on sorption behavior of Ca-Mg phosphates towards Sr(II) ions in aqueous solution. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2017.09.027

    Article  Google Scholar 

  18. Luca V, Bianchi HL, Manzini AC (2012) Cation immobilization in pyrolyzed simulated spent ion exchange resins. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2012.01.004

    Article  Google Scholar 

  19. Ivanets A, Kitikova N, Shashkova I, Radkevich A, Shemet L, Sillanpää M (2018) Effective removal of 60Co from high-salinity water by Ca–Mg phosphate sorbents. J Radioanal Nucl Chem 318(3):2341–2347. https://doi.org/10.1007/s10967-018-6291-5

    Article  CAS  Google Scholar 

  20. Avramenko VA, Egorin AM, Papynov EK, Sokol’nitskaya TA, Tananaev IG, Sergienko VI (2017) Processes for treatment of liquid radioactive waste containing seawater. Radiochemistry 59:407–413. https://doi.org/10.1134/S1066362217040142

    Article  CAS  Google Scholar 

  21. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Krivoshapkin PV, Krivoshapkina EF, Sillanpää M (2018) Sorption behavior of 85Sr onto manganese oxides with tunnel structure. J Radioanal Nucl Chem 316:673–683. https://doi.org/10.1007/s10967-018-5771-y

    Article  CAS  Google Scholar 

  22. Milyutin VV, Nekrasova NA, Yanicheva NY, Kalashnikova GO, Ganicheva YY (2017) Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates. Radiochemistry 59:65–69. https://doi.org/10.1134/S1066362217010088

    Article  CAS  Google Scholar 

  23. Denecke MA, Bryan N, Kalmykov S, Morris K, Quinto F (2018) Sources and behaviour of actinide elements in the environment. Exp Theor Approach Actin Chem. https://doi.org/10.1002/9781119115557.ch8

    Article  Google Scholar 

  24. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Zarubo AM (2916) Mesoporous manganese oxides prepared by sol-gel method: synthesis, characterization and sorption properties towards strontium ions. Environ Nanotechnol Monit Manag 6:261–269. https://doi.org/10.1016/j.enmm.2016.11.004

    Article  Google Scholar 

  25. Ivanets AI, Shashkova IL, Kitikova NV, Maslova MV, Mudruk NV (2019) New heterogeneous synthesis of mixed Ti-Ca-Mg phosphates as efficient sorbents of 137Cs, 90Sr and 60Co radionuclides. J Taiwan Inst Chem Eng 104:151–159. https://doi.org/10.1016/j.jtice.2019.09.001

    Article  CAS  Google Scholar 

  26. Maslova M, Mudruk N, Ivanets A, Shashkova I, Kitikova N (2020) A novel sorbent based on Ti-Ca-Mg phosphates: synthesis, characterization, and sorption properties. Environ Sci Pollut Res 27:3933–3949. https://doi.org/10.1007/s11356-019-06949-3

    Article  CAS  Google Scholar 

  27. Ivanets AI, Srivastava V, Kitikova NV, Shashkova IL, Sillanpää M (2017) Non-apatite Ca-Mg phosphate sorbent for removal of toxic metal ions from aqueous solutions. J Environ Chem Eng 5:2010–2017. https://doi.org/10.1016/j.jece.2017.03.041

    Article  CAS  Google Scholar 

  28. Ivanets AI, Kitikova NV, Shashkova IL, Oleksiienko OV, Levchuk I, Sillanpää M (2014) Removal of Zn2+, Fe2+, Cu2+, Pb2+, Cd2+, Ni2+ and Co2+ ions from aqueous solutions using modified phosphate dolomite. J Environ Chem Eng 2(2):981–987. https://doi.org/10.1016/j.jece.2014.03.018

    Article  CAS  Google Scholar 

  29. Maslova MV, Gerasimova LG (2011) The influence of chemical modification on structure and sorption properties of titanium phosphate. Russ J Appl Chem 84:1–8

    Article  CAS  Google Scholar 

  30. Maslova MV, Ivanenko VI, Gerasimova LG, Ryzhuk NL (2018) Effect of synthesis method on the phase composition and ion-exchange properties of titanium phosphate. Russ J Inorg Chem 63:1141–1148. https://doi.org/10.1134/S0036023618090115

    Article  CAS  Google Scholar 

  31. Ivanets A, Kitikova N, Shashkova I, Radkevich A, Stepanchuk T, Maslova M, Mudruk N (2020) One-stage adsorption treatment of liquid radioactive wastes with complex radionuclide composition. Water Air Soil Pollut 231(4):1–10. https://doi.org/10.1007/s11270-020-04529-7

    Article  CAS  Google Scholar 

  32. Maslova MV, Rusanova D, Naydenov V, Antzutkin ON, Gerasimova LG (2012) Extended study on the synthesis of amorphous titanium phosphates with tailored sorption properties. J Non-Cryst Solids 358:2943–2950. https://doi.org/10.1016/j.jnoncrysol.2012.06.033

    Article  CAS  Google Scholar 

  33. Maslova MV, Rusanova D, Naydenov V, Antzutkin ON, Gerasimova LG (2008) Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates. Inorg Chem 47:11351–11360. https://doi.org/10.1021/ic801274z

    Article  CAS  PubMed  Google Scholar 

  34. Zhao D, Wang Y, Xuan H, Chen Y, Cao T (2013) Removal of radiocobalt from aqueous solution by Mg2Al layered double hydroxide. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-012-1994-5

    Article  Google Scholar 

  35. Pshinko GN, Puzyrnaya LN, Shunkov VS, Kosorukov AA, Demchenko VY (2016) Removal of cesium and strontium radionuclides from aqueous media by sorption onto magnetic potassium zinc hexacyanoferrate (II). Radiochemistry. https://doi.org/10.1134/S1066362216050088

    Article  Google Scholar 

  36. Egorin A, Sokolnitskaya T, Azarova Y, Portnyagin A, Balanov M, Misko D, Shelestyuk E, Kalashnikova A, Tokar E, Tananaev I, Avramenko V (2018) Investigation of Sr uptake by birnessite-type sorbents from seawater. J Radioanal Nucl Chem 317:243–251. https://doi.org/10.1007/s10967-018-5905-2

    Article  CAS  Google Scholar 

  37. Guo Z, Ling Q, Zhou Y, Wei L, Zhou R, Niu H, Li Y, Xu J (2017) Synthesis of three-dimensional flower-like α-Fe2O3 microspheres for high efficient removal of radiocobalt. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5534-1

    Article  Google Scholar 

  38. Semenischev VS, Voronina AV, Bykov AA (2013) The study of sorption of cesium radionuclides by “T-55” ferrocyanide sorbent from various types of liquid radioactive wastes. J Radioanal Nucl Chem 295:1753–1757. https://doi.org/10.1007/s10967-012-2299-4

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Belarusian state program of scientific research (Grant No. 1.05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Ivanets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanets, A., Milyutin, V., Shashkova, I. et al. Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates. J Radioanal Nucl Chem 324, 1115–1123 (2020). https://doi.org/10.1007/s10967-020-07140-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07140-6

Keywords

Navigation