Skip to main content
Log in

Grafting of CdTe quantum dots on thiol functionalized MCM-41 mesoporous silica for 68Ga radiolabeling: introducing a novel PET agent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiolabeled fluorescent nanocomposite, 68Ga@CdTeQDs@SH-Propyl@MCM-41, was prepared. The prepared material was characterized using X-ray diffraction, thermal analysis, radio-thin layer chromatography, field Emission scanning electron microscopy, transmission electron microscopy and N2 adsorption and desorption measurements. In vivo biodistribution and tumor avidity of the nanoconposite was investigated among the organs of rats bearing fibro sarcoma tumor. The results showed that the mesoporous structure of MCM-41 after functionalization and grafting of quantum dots remains intact and the nanosilica can be labeled with 68Ga radionuclide very fast. The results showed a rapid and high tumor uptake for 68Ga@CdTeQDs@SH-Propyl@MCM-41 which revealed that the tumor uptake is modulated by size and character of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Jin G, He R, Liu Q, Dong Y, Lin M, Li W, Xu F (2018) Theranostics of triple-negative breast cancer based on conjugated polymer nanoparticles. ACS Appl Mater Interfaces 10(13):10634–10646. https://doi.org/10.1021/acsami.7b14603

    Article  CAS  PubMed  Google Scholar 

  2. Baek S, Singh RK, Kim T-H, Seo J-w, Shin US, Chrzanowski W, Kim H-W (2016) Triple hit with drug carriers: pH- and temperature-responsive theranostics for multimodal chemo- and photothermal therapy and diagnostic applications. ACS Appl Mater Interfaces 8(14):8967–8979. https://doi.org/10.1021/acsami.6b00963

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Li F, Qiao R, Hu X, Liao H, Chen L, Wu J, Wu H, Zhao M, Liu J, Chen R, Ma X, Kim D, Sun J, Davis TP, Chen C, Tian J, Hyeon T, Ling D (2018) Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano 12(12):12380–12392. https://doi.org/10.1021/acsnano.8b06399

    Article  CAS  PubMed  Google Scholar 

  4. Ehlerding EB, Ferreira CA, Aluicio-Sarduy E, Jiang D, Lee HJ, Theuer CP, Engle JW, Cai W (2018) 86/90Y-based theranostics targeting angiogenesis in a murine breast cancer model. Mol Pharm 15(7):2606–2613. https://doi.org/10.1021/acs.molpharmaceut.8b00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mangadlao JD, Wang X, McCleese C, Escamilla M, Ramamurthy G, Wang Z, Govande M, Basilion JP, Burda C (2018) Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 12(4):3714–3725. https://doi.org/10.1021/acsnano.8b00940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang M, Xing L, Ke H, He Y-J, Cui P-F, Zhu Y, Jiang G, Qiao J-B, Lu N, Chen H, Jiang H-L (2017) MnO2-based nanoplatform serves as drug vehicle and mri contrast agent for cancer theranostics. ACS Appl Mater Interfaces 9(13):11337–11344. https://doi.org/10.1021/acsami.6b15247

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Zhao Y (2018) Applications of light-responsive systems for cancer theranostics. ACS Appl Mater Interfaces 10(25):21021–21034. https://doi.org/10.1021/acsami.8b01114

    Article  CAS  PubMed  Google Scholar 

  8. Duan D, Liu H, Xu M, Chen M, Han Y, Shi Y, Liu Z (2018) Size-controlled synthesis of drug-loaded zeolitic imidazolate framework in aqueous solution and size effect on their cancer theranostics in vivo. ACS Appl Mater Interfaces 10(49):42165–42174. https://doi.org/10.1021/acsami.8b17660

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, Wang L, Lin M, Wang D, Song Z, Li S, Ge R, Zhang X, Liu Y, Li Z, Sun H, Yang B, Zhang H (2017) Cu(II)-doped polydopamine-coated gold nanorods for tumor theranostics. ACS Appl Mater Interfaces 9(51):44293–44306. https://doi.org/10.1021/acsami.7b13643

    Article  CAS  PubMed  Google Scholar 

  10. Chen F, Ma K, Zhang L, Madajewski B, Zanzonico P, Sequeira S, Gonen M, Wiesner U, Bradbury MS (2017) Target-or-clear zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: a comparison of radiolabeling strategies. Chem Mater 29(19):8269–8281. https://doi.org/10.1021/acs.chemmater.7b02567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fazaeli Y, Feizi S, Jalilian AR, Hejrani A (2016) Grafting of [64Cu]-TPPF20 porphyrin complex on functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl Radiat Isot 112:13–19. https://doi.org/10.1016/j.apradiso.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  12. Fazaeli Y, Zare H, Karimi S, Rahighi R, Feizi S (2017) Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl Phys A 123(8):507. doi:https://doi.org/10.1007/s00339-017-1125-9

    Article  CAS  Google Scholar 

  13. Fazaeli Y, Asgari Z (2018) DTPA-functionalized nano-porous MCM-41 silica: a new potential nanoengineered labeled composite for diagnostic applications. Iran J Sci Technol Trans A Sci 42(2):497–504. https://doi.org/10.1007/s40995-016-0047-2

    Article  Google Scholar 

  14. Fazaeli Y, Hosseini Mohammad A, Afrasyabi M, Ashtari P (2019) 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications. Radiochim Acta 107:157–164. https://doi.org/10.1515/ract-2017-2923

    Article  CAS  Google Scholar 

  15. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core–shell fluorescent silica nanoparticles. Nano Lett 5(1):113–117. https://doi.org/10.1021/nl0482478

    Article  CAS  PubMed  Google Scholar 

  16. Tan H, Gong G, Xie S, Song Y, Zhang C, Li N, Zhang D, Xu L, Xu J, Zheng J (2019) Upconversion nanoparticles@carbon dots@meso-SiO2 sandwiched core–shell nanohybrids with tunable dual-mode luminescence for 3D anti-counterfeiting barcodes. Langmuir 35(35):11503–11511. https://doi.org/10.1021/acs.langmuir.9b01919

    Article  CAS  PubMed  Google Scholar 

  17. Fazaeli Y, Amini MM, Ashourion H, Heydari H, Majdabadi A, Jalilian AR, Abolmaali S (2011) Grafting of a novel gold(III) complex on nanoporous MCM-41 and evaluation of its toxicity in Saccharomyces cerevisiae. Int J Nanomed 6:3251–3257. doi:https://doi.org/10.2147/IJN.S25449

    Article  CAS  Google Scholar 

  18. Sun X, Cai W, Chen X (2015) Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc Chem Res 48(2):286–294. doi:https://doi.org/10.1021/ar500362y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang R, Zhang Y, Tan J, Wang H, Zhang G, Li N, Meng Z, Zhang F, Chang J, Wang R (2019) Antitumor effect of 131I-labeled anti-VEGFR2 targeted mesoporous silica nanoparticles in anaplastic thyroid cancer. Nanoscale Res Lett 14(1):96. https://doi.org/10.1186/s11671-019-2924-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ni D, Jiang D, Ehlerding EB, Huang P, Cai W (2018) Radiolabeling silica-based nanoparticles via coordination chemistry: basic principles, strategies, and applications. Acc Chem Res 51(3):778–788. https://doi.org/10.1021/acs.accounts.7b00635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen F, Hong H, Zhang Y, Valdovinos HF, Shi S, Kwon GS, Theuer CP, Barnhart TE, Cai W (2013) In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7(10):9027–9039. https://doi.org/10.1021/nn403617j

    Article  CAS  PubMed  Google Scholar 

  22. Chen F, Valdovinos HF, Hernandez R, Goel S, Barnhart TE, Cai W (2017) Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacol Sin 38(6):907–913. https://doi.org/10.1038/aps.2017.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen F, Goel S, Valdovinos HF, Luo H, Hernandez R, Barnhart TE, Cai W (2015) In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9(8):7950–7959. https://doi.org/10.1021/acsnano.5b00526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaffer TM, Harmsen S, Khwaja E, Kircher MF, Drain CM, Grimm J (2016) Stable radiolabeling of sulfur-functionalized silica nanoparticles with copper-64. Nano Lett 16(9):5601–5604. https://doi.org/10.1021/acs.nanolett.6b02161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shaffer TM, Wall MA, Harmsen S, Longo VA, Drain CM, Kircher MF, Grimm J (2015) Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett 15(2):864–868. https://doi.org/10.1021/nl503522y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Y, Shi X, Han B, Qin H, Li Z, Lu Y, Wang J, Kong Y (2012) The complete control for the nanosize of spherical MCM-41. J Nanosci Nanotechnol 12(9):7239–7249. https://doi.org/10.1166/jnn.2012.6459

    Article  CAS  PubMed  Google Scholar 

  27. Kiss FD, Ferraz AC (2006) The oxidation mechanism of CdTe (110) surface. Braz J Phys 36:291–293

    Article  CAS  Google Scholar 

  28. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41(1):207–219. https://doi.org/10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  29. Zhang W-H, Lu X-B, Xiu J-H, Hua Z-L, Zhang L-X, Robertson M, Shi J-L, Yan D-S, Holmes JD (2004) Synthesis and characterization of bifunctionalized ordered mesoporous materials. Adv Func Mater 14(6):544–552. https://doi.org/10.1002/adfm.200305001

    Article  CAS  Google Scholar 

  30. Burns AA, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, Larson SM, Wiesner U, Bradbury M (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9(1):442–448. https://doi.org/10.1021/nl803405h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Souris JS, Lee CH, Cheng SH, Chen CT, Yang CS, Ho JA, Mou CY, Lo LW (2010) Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 31(21):5564–5574. https://doi.org/10.1016/j.biomaterials.2010.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16):1794–1805. https://doi.org/10.1002/smll.201000538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Fazaeli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasekholghol, A., Fazaeli, Y., Moradi Dehaghi, S. et al. Grafting of CdTe quantum dots on thiol functionalized MCM-41 mesoporous silica for 68Ga radiolabeling: introducing a novel PET agent. J Radioanal Nucl Chem 324, 599–608 (2020). https://doi.org/10.1007/s10967-020-07102-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07102-y

Keywords

Navigation