Skip to main content
Log in

The oxo exchange reaction mechanism of americyl(VI): a density functional theory study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work concerned the oxo exchange of americyl(VI) ([AmO2]2+) in alkaline solution by means of B3LYP calculations. Four possible reaction pathways were investigated and compared, which covered the direct intramolecular proton transfer pathway (Path 1 and 2), the pathway via a T-shape [AmO3](aq) intermediate (Path 3), and the binuclear pathway (Path 4). The Path 3 was predicted as the most probable pathway in view of the energetics, the activation energy (∆G) to which was calculated to be 55.7 kJ/mol. The evolution of the Mayer bond order of key bonds were analyzed to assist the understanding of the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Angino EE (1977) High-level and long-lived radioactive waste disposal. Science 198(4320):885–890. https://doi.org/10.1126/science.198.4320.885

    Article  CAS  PubMed  Google Scholar 

  2. Dares CJ, Lapides AM, Mincher BJ, Meyer TJ (2015) Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode. Science 350(6261):652–655. https://doi.org/10.1126/science.aac9217

    Article  CAS  PubMed  Google Scholar 

  3. Clark DL, Conradson SD, Donohoe RJ, Keogh DW, Morris DE, Palmer PD, Rogers RD, Tait CD (1999) Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg Chem 38(7):1456–1466. https://doi.org/10.1021/ic981137h

    Article  CAS  Google Scholar 

  4. Marcalo J, Gibson JK (2009) Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium. J Phys Chem A 113(45):12599–12606. https://doi.org/10.1021/jp904862a

    Article  CAS  PubMed  Google Scholar 

  5. Shamov GA, Schreckenbach G (2008) Theoretical study of the oxygen exchange in uranyl hydroxide. An old riddle solved? J Am Chem Soc 130(41):13735–13744. https://doi.org/10.1021/ja804742f

    Article  CAS  PubMed  Google Scholar 

  6. Bühl M, Schreckenbach G (2010) Oxygen exchange in uranyl hydroxide via two “nonclassical” ions. Inorg Chem 49(8):3821–3827. https://doi.org/10.1021/ic902508z

    Article  CAS  PubMed  Google Scholar 

  7. Moll H, Rossberg A, Steudtner R, Drobot B, Müller K, Tsushima S (2014) Uranium(VI) chemistry in strong alkaline solution: speciation and oxygen exchange mechanism. Inorg Chem 53(3):1585–1593. https://doi.org/10.1021/ic402664n

    Article  CAS  PubMed  Google Scholar 

  8. Szabó Z, Grenthe I (2010) On the mechanism of oxygen exchange between uranyl(VI) oxygen and water in strongly alkaline solution as studied by 17O NMR magnetization transfer. Inorg Chem 49(11):4928–4933. https://doi.org/10.1021/ic9025624

    Article  CAS  PubMed  Google Scholar 

  9. Clark DL, Conradson SD, Donohoe RJ, Gordon PL, Keogh DW, Palmer PD, Scott BL, Tait CD (2013) Chemical speciation of neptunium(VI) under strongly alkaline conditions. Structure, composition, and oxo ligand exchange. Inorg Chem 52(7):3547–3555. https://doi.org/10.1021/ic3020139

    Article  CAS  PubMed  Google Scholar 

  10. Yang X, Chai Z, Wang D (2015) Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(VI) hydroxide in aqueous solution. Phys Chem Chem Phys 17(11):7537–7547. https://doi.org/10.1039/c4cp04586f

    Article  CAS  PubMed  Google Scholar 

  11. Rios D, del Carmen MM, Lucena AF, Marcalo J, Gibson JK (2012) On the origins of faster oxo exchange for uranyl(V) versus plutonyl(V). J Am Chem Soc 134(37):15488–15496. https://doi.org/10.1021/ja305800q

    Article  CAS  PubMed  Google Scholar 

  12. Lucena AF, Odoh SO, Zhao J, Marcalo J, Schreckenbach G, Gibson JK (2014) Oxo-exchange of gas-phase uranyl, neptunyl, and plutonyl with water and methanol. Inorg Chem 53(4):2163–2170. https://doi.org/10.1021/ic402824k

    Article  CAS  PubMed  Google Scholar 

  13. Dau PD, Wilson RE, Gibson JK (2015) Elucidating protactinium hydrolysis: the relative stabilities of PaO2(H2O)+ and PaO(OH)+2 . Inorg Chem 54(15):7474–7480. https://doi.org/10.1021/acs.inorgchem.5b01078

    Article  CAS  PubMed  Google Scholar 

  14. Vasiliu M, Gibson JK, Peterson KA, Dixon DA (2019) Gas phase hydrolysis and oxo-exchange of actinide dioxide cations: elucidating intrinsic chemistry from protactinium to einsteinium. Chem Eur J 25(17):4245–4254. https://doi.org/10.1002/chem.201803932

    Article  CAS  PubMed  Google Scholar 

  15. Vasiliu M, Peterson KA, Gibson JK, Dixon DA (2015) Reliable Potential Energy surfaces for the reactions of H2O with ThO2, PaO2+, UO22+, and UO2+. J Phys Chem A 119(46):11422–11431. https://doi.org/10.1021/acs.jpca.5b08618

    Article  CAS  PubMed  Google Scholar 

  16. Dau PD, Vasiliu M, Peterson KA, Dixon DA, Gibson JK (2017) Remarkably high stability of late actinide dioxide cations: extending chemistry to pentavalent berkelium and californium. Chem Eur J 23(68):17369–17378. https://doi.org/10.1002/chem.201704193

    Article  CAS  PubMed  Google Scholar 

  17. Kaltsoyannis N (2016) Covalency hinders AnO2(H2O)+ → AnO(OH)+2 isomerisation (An = Pa − Pu). Dalton Trans 45(7):3158–3162. https://doi.org/10.1039/c5dt04317d

    Article  CAS  PubMed  Google Scholar 

  18. Schreckenbach G, Hay PJ, Martin RL (1998) Theoretical study of stable trans and cis isomers in [UO2(OH)4]2− using relativistic density functional theory. Inorg Chem 37(17):4442–4451. https://doi.org/10.1021/ic980057a

    Article  CAS  PubMed  Google Scholar 

  19. Martin RL, Hay PJ, Pratt LR (1998) Hydrolysis of ferric ion in water and conformational equilibrium. J Phys Chem A 102(20):3565–3573. https://doi.org/10.1021/jp980229p

    Article  CAS  Google Scholar 

  20. Shamov GA, Schreckenbach G (2005) Density functional studies of actinyl aquo complexes studied using small-core effective core potentials and a scalar four-component relativistic method. J Phys Chem A 109(48):10961–10974. https://doi.org/10.1021/jp053522f

    Article  CAS  PubMed  Google Scholar 

  21. Shamov GA, Schreckenbach G (2006) Density functional studies of actinyl aquo complexes studied using small-core effective core potentials and a scalar four-component relativistic method (volume 109A, Page 10961, 2005). J Phys Chem A 110(43):12072. https://doi.org/10.1021/jp0662855

    Article  CAS  Google Scholar 

  22. Parr RG, Yang WT (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  23. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28(3):213–222. https://doi.org/10.1007/bf00533485

    Article  CAS  Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  26. Tsushima S (2012) “yl”-Oxygen exchange in uranyl(VI) ion: a mechanism involving (UO2)2(μ-OH)2+2 via U–Oyl–U bridge formation. Inorg Chem 51(3):1434–1439. https://doi.org/10.1021/ic201679e

    Article  CAS  PubMed  Google Scholar 

  27. Real F, Vallet V, Wahlgren U, Grenthe I (2008) Ab initio study of the mechanism for photoinduced Yl-oxygen exchange in uranyl(VI) in acidic aqueous solution. J Am Chem Soc 130(35):11742–11751. https://doi.org/10.1021/ja8026407

    Article  CAS  PubMed  Google Scholar 

  28. Schlosser F, Krüger S, Rösch N (2006) A density functional study of uranyl monocarboxylates. Inorg Chem 45(4):1480–1490. https://doi.org/10.1021/ic050767y

    Article  CAS  PubMed  Google Scholar 

  29. Yang T, Bursten BE (2006) Speciation of the curium(III) ion in aqueous solution: a combined study by quantum chemistry and molecular dynamics simulation. Inorg Chem 45(14):5291–5301. https://doi.org/10.1021/ic0513787

    Article  CAS  PubMed  Google Scholar 

  30. Schreckenbach G, Hay PJ, Martin RL (1999) Density functional calculations on actinide compounds: survey of recent progress and application to [UO2X4]2− (X = F, Cl, OH) and AnF6 (An = U, Np, Pu). J Comput Chem 20(1):70–90. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3c70:AID-JCC9%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  31. Kaltsoyannis N (2003) Recent developments in computational actinide chemistry. Chem Soc Rev 32(1):9–16. https://doi.org/10.1039/b204253n

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, van Gunsteren WF, Chai Z (2012) Recent advances in computational actinoid chemistry. Chem Soc Rev 41(17):5836–5865. https://doi.org/10.1039/c2cs15354h

    Article  CAS  PubMed  Google Scholar 

  33. Küchle W, Dolg M, Stoll H, Preuss H (1994) Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys 100(10):7535–7542. https://doi.org/10.1063/1.466847

    Article  Google Scholar 

  34. Cao XY, Dolg M, Stoll H (2003) Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J Chem Phys 118(2):487–496. https://doi.org/10.1063/1.1521431

    Article  CAS  Google Scholar 

  35. Cao XY, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct (Theochem) 673(1–3):203–209. https://doi.org/10.1016/j.theochem.2003.12.015

    Article  CAS  Google Scholar 

  36. del Carmen Michelini M, Russo N, Sicilia E (2007) Gas-phase chemistry of actinides ions: new insights into the reaction of UO+ and UO2+ with water. J Am Chem Soc 129(14):4229–4239. https://doi.org/10.1021/ja065683i

    Article  CAS  Google Scholar 

  37. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19(4):404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4%3c404:AID-JCC3%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  38. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction-path following. J Chem Phys 90(4):2154–2161. https://doi.org/10.1063/1.456010

    Article  CAS  Google Scholar 

  39. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  41. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9):5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  42. Lu T, Chen FW (2011) Meaning and functional form of the electron localization function. Acta Phys-Chim Sin 27(12):2786–2792. https://doi.org/10.3866/pku.whxb20112786

    Article  CAS  Google Scholar 

  43. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  44. Moll H, Reich T, Szabó Z (2000) The hydrolysis of dioxouranium(VI) investigated using EXAFS and 17O-NMR. Radiochim Acta 88(7):411–415. https://doi.org/10.1524/ract.2000.88.7.411

    Article  CAS  Google Scholar 

  45. Di Pietro P, Kerridge A (2016) U–Oyl stretching vibrations as a quantitative measure of the equatorial bond covalency in uranyl complexes: a quantum-chemical investigation. Inorg Chem 55(2):573–583. https://doi.org/10.1021/acs.inorgchem.5b01219

    Article  CAS  PubMed  Google Scholar 

  46. Hratchian HP, Sonnenberg JL, Hay PJ, Martin RL, Bursten BE, Schlegel HB (2005) Theoretical investigation of uranyl dihydroxide: oxo ligand exchange, water catalysis, and vibrational spectra. J Phys Chem A 109(38):8579–8586. https://doi.org/10.1021/jp052616m

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China to W. Chen (10676007), Z. Chai (91026000) and D. Wang (21473206 and 91226105), and the CAS Hundred Talents Program to D. Wang (Y2291810S3), which are gratefully acknowledged. Calculations were done on the computational grids in the National Supercomputing Center in Tianjin (NSCC-TJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenkai Chen or Dongqi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10967_2020_7097_MOESM1_ESM.docx

Supplementary information SI_1: the values of < S2 > after annihilation for monomeric and dimeric complexes or transition states, the Mulliken atomic charges (Table S4 and S5), the key chemical bond order of the species along the Path 3 and 4, the electronic localization function (ELF) of key species along Path 4, and the coordinates of all stationary points. SI_2: our latest calculations for the Path 3 of neptunyl(VI) in alkaline solution. (DOCX 17063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Chen, W., Chai, Z. et al. The oxo exchange reaction mechanism of americyl(VI): a density functional theory study. J Radioanal Nucl Chem 324, 857–868 (2020). https://doi.org/10.1007/s10967-020-07097-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07097-6

Keywords

Navigation