Skip to main content
Log in

Sorption behavior of selenide on montmorillonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Batch sorption experiments were performed to investigate the sorption mechanism of Se on montmorillonite under reducing conditions in deep geological environments. Based on Eh–pH diagrams and ultraviolet–visible spectra, Se was dissolved as selenide (Se(–II)) anions under the experimental conditions. The distribution coefficients (Kd; m3 kg−1) of Se(–II) indicated ionic strength independence and slight pH dependence. The Kd values of Se(–II) were higher than those of Se(IV), which also exists as an anionic species. X-ray absorption near edge spectroscopy showed that the oxidation state of Se-sorbed on montmorillonite was zero even though selenide remained in the solution. These results suggest that Se(–II) was oxidized and precipitated on the montmorillonite surface. Therefore, it is implied that a redox reaction on the montmorillonite surface contributed to high Kd values for Se(–II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldberg S (2014) Modeling selenite adsorption behavior on oxides, clay minerals, and soils using the triple layer model. Soil Sci 179:568–576. https://doi.org/10.1097/SS.0000000000000097

    Article  CAS  Google Scholar 

  2. Santos S, Ungureanu G, Boaventura R, Botelho C (2015) Selenium contaminated waters: an overview of analytical methods, treatment options and recent advances in sorption methods. Sci Total Environ 521–522:246–260. https://doi.org/10.1016/j.scitotenv.2015.03.107

    Article  CAS  PubMed  Google Scholar 

  3. Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56. https://doi.org/10.1016/S0147-6513(03)00095-2

    Article  CAS  PubMed  Google Scholar 

  4. Japan Nuclear Cycle Development Institute (JNC) (2000) H12: project to establish the scientific and technical basis for HLW disposal in Japan. JNC TN1400 99–023

  5. Japan Atomic Energy Agency (JAEA), Federation of Electric Power Companies of Japan (FEPC) (2007) Second progress report on research and development for TRU waste disposal in Japan—repository design, safety assessment and means of implementation in the generic phase. JAEA-Review 2007–010

  6. Jiang SS, He M, Diao LJ, Guo JR (2001) Remeasurement of the half-life of 79Se with the projectile X-ray detection method. Chin Phys Lett 18:746–749. https://doi.org/10.1088/0256-307X/18/6/311

    Article  Google Scholar 

  7. Tachi Y, Nakazawa T, Ochs M, Yotsuji K, Suyama T, Seida Y, Yamada N, Yui M (2010) Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity. Radiochim Acta 98:711–718. https://doi.org/10.1524/ract.2010.1772

    Article  CAS  Google Scholar 

  8. Tachi Y, Yotsuji K, Seida Y, Yui M (2011) Diffusion and sorption of Cs+, I and HTO in samples of the argillaceous Wakkanai formation from the horonobe URL, Japan: clay-based modeling approach. Geochim Cosmochim Acta 75:6742–6759. https://doi.org/10.1016/j.gca.2011.08.039

    Article  CAS  Google Scholar 

  9. Marques Fernandes M, Vér N, Baeyens B (2015) Predicting the uptake of Cs Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl Geochem 59:189–199. https://doi.org/10.1016/j.apgeochem.2015.05.006

    Article  CAS  Google Scholar 

  10. Missana T, Alonso U, García-Gutiérrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interface Sci 334:132–138. https://doi.org/10.1016/j.jcis.2009.02.059

    Article  CAS  PubMed  Google Scholar 

  11. Hayes KF, Papelis C, Leckie JO (1988) Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 125:717–726. https://doi.org/10.1016/0021-9797(88)90039-2

    Article  CAS  Google Scholar 

  12. Hayes KF, Roe L, Brown GE Jr, Hodgeson KO, Leckie JO, Parks GA (1987) In situ X-ray absorption study of surface complexes: selenium oxyanions on α-FeOOH. Science 80(238):783–786. https://doi.org/10.1126/science.238.4828.783

    Article  Google Scholar 

  13. Su C, Suarez DL (2000) Selenate and selenite sorption on iron oxides. Soil Sci Soc Am J 64:101–111. https://doi.org/10.2136/sssaj2000.641101x

    Article  CAS  Google Scholar 

  14. Peak D (2006) Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J Colloid Interface Sci 303:337–345. https://doi.org/10.1016/j.jcis.2006.08.014

    Article  CAS  PubMed  Google Scholar 

  15. Peak D, Sparks DL (2002) Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ Sci Technol 36:1460–1466. https://doi.org/10.1021/es0156643

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh MM, Cox CD, Yuan-Pan JR (1994) Adsorption of selenium on hydrous alumina. Environ Prog 13:79–88. https://doi.org/10.1002/ep.670130210

    Article  CAS  Google Scholar 

  17. Iida Y, Yamaguchi T, Tanaka T (2014) Sorption behavior of hydroselenide (HSe) onto iron-containing minerals. J Nucl Sci Technol 51:305–322. https://doi.org/10.1080/00223131.2014.864457

    Article  CAS  Google Scholar 

  18. Mayordomo N, Foerstendorf H, Lützenkirchen J, Heim K, Weiss S, Alonso U, Missana T, Schmeide K, Jordan N (2018) Selenium(IV) sorption onto γ-Al2O3: a consistent description of the surface speciation by spectroscopy and thermodynamic modeling. Environ Sci Technol 52:581–588. https://doi.org/10.1021/acs.est.7b04546

    Article  CAS  PubMed  Google Scholar 

  19. Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil—selenium. Soil Sci Soc Am J 52:954–958. https://doi.org/10.2136/sssaj1988.03615995005200040010x

    Article  CAS  Google Scholar 

  20. Boult KA, Cowper MM, Heath TG, Sato H, Shibutani T, Yui M (1998) Towards an understanding of the sorption of U(VI) and Se(IV) on sodium bentonite. J Contam Hydrol 35:141–150. https://doi.org/10.1016/S0169-7722(98)00122-3

    Article  CAS  Google Scholar 

  21. Peak D, Saha UK, Huang PM (2006) Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic study. Soil Sci Soc Am J 70:192–203. https://doi.org/10.2136/sssaj2005.0054

    Article  CAS  Google Scholar 

  22. Scheinost AC, Kirsch R, Banerjee D, Fernandez-Martinez A, Zaenker H, Funke H, Charlet L (2008) X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals. J Contam Hydrol 102:228–245. https://doi.org/10.1016/j.jconhyd.2008.09.018

    Article  CAS  PubMed  Google Scholar 

  23. Montavon G, Guo Z, Lützenkirchen J, Alhajji E, Kedziorek MAM, Bourg ACM, Grambow B (2009) Interaction of selenite with MX-80 bentonite: effect of minor phases, pH, selenite loading, solution composition and compaction. Colloids Surf A Physicochem Eng Asp 332:71–77. https://doi.org/10.1016/j.colsurfa.2008.09.014

    Article  CAS  Google Scholar 

  24. Shi K, Ye Y, Guo N, Guo Z, Wu W (2014) Evaluation of Se(IV) removal from aqueous solution by GMZ Na–bentonite: batch experiment and modeling studies. J Radioanal Nucl Chem 299:583–589. https://doi.org/10.1007/s10967-013-2807-1

    Article  CAS  Google Scholar 

  25. Haciyakupoglu S, Orucoglu E (2013) 75Se radioisotope adsorption using Turkey’s reşadiye modified bentonites. Appl Clay Sci 86:190–198. https://doi.org/10.1016/j.clay.2013.10.010

    Article  CAS  Google Scholar 

  26. Morel JP, Marmier N, Hurel C, Morel-Desrosiers N (2015) Thermodynamics of selenium sorption on alumina and montmorillonite. Cogent Chem 1:1–12. https://doi.org/10.1080/23312009.2015.1070943

    Article  CAS  Google Scholar 

  27. Wang H, Wu T, Chen J, Zheng Q, He C, Zhao Y (2015) Sorption of Se(IV) on Fe- and Al-modified bentonite. J Radioanal Nucl Chem 303:107–113. https://doi.org/10.1007/s10967-014-3422-5

    Article  CAS  Google Scholar 

  28. Mayordomo N, Alonso U, Missana T (2016) Analysis of the improvement of selenite retention in smectite by adding alumina nanoparticles. Sci Total Environ 572:1025–1032. https://doi.org/10.1016/j.scitotenv.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  29. Charlet L, Scheinost AC, Tournassat C, Greneche JM, Géhin A, Fernández-Martínez A, Coudert S, Tisserand D, Brendle J (2007) Electron transfer at the mineral/water interface: selenium reduction by ferrous iron sorbed on clay. Geochim Cosmochim Acta 71:5731–5749. https://doi.org/10.1016/j.gca.2007.08.024

    Article  CAS  Google Scholar 

  30. Iida Y, Tanaka T, Yamaguchi T, Nakayama S (2011) Sorption behavior of selenium(–II) on rocks under reducing conditions. J Nucl Sci Technol 48:279–291. https://doi.org/10.3327/jnst.48.279

    Article  CAS  Google Scholar 

  31. Naveau A, Monteil-Rivera F, Guillon E, Dumonceau J (2007) Interactions of aqueous selenium (–II) and (IV) with metallic sulfide surfaces. Environ Sci Technol 41:5376–5382. https://doi.org/10.1021/es0704481

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Fattahi M, Montavon G, Grambow B (2008) Selenide retention onto pyrite under reducing conditions. Radiochim Acta 96:473–479. https://doi.org/10.1524/ract.2008.1514

    Article  CAS  Google Scholar 

  33. Diener A, Neumann T (2011) Synthesis and incorporation of selenide in pyrite and mackinawite. Radiochim Acta 99:791–798. https://doi.org/10.1524/ract.2011.1883

    Article  CAS  Google Scholar 

  34. Diener A, Neumann T, Kramar U, Schild D (2012) Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses. J Contam Hydrol 133:30–39. https://doi.org/10.1016/j.jconhyd.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  35. Finck N, Dardenne K, Bosbach D, Geckeis H (2012) Selenide retention by mackinawite. Environ Sci Technol 46:10004–10011. https://doi.org/10.1021/es301878y

    Article  CAS  PubMed  Google Scholar 

  36. Ito M, Okamoto M, Shibata M, Sasaki Y, Danbara T, Suzuki K, Watanabe T (1993) Mineral composition analysis of bentonite (in Japanese). PNC TN8430 93–003

  37. Bethke CM, Yeakel S (2018) GWB Essentials guide

  38. Kitamura A, Doi R, Yoshida Y (2014) Update of JAEA-TDB: update of thermodynamic data for palladium and tin, refinement of thermodynamic data for protactinium, and preparation of PHREEQC database for use of the Brønsted–Guggenheim–Scatchard Model. JAEA-Data/Code 2014–009

  39. Iida Y, Yamaguchi T, Tanaka T, Nakayama S (2010) Solubility of selenium at high ionic strength under anoxic conditions. J Nucl Sci Technol 47:431–438. https://doi.org/10.1080/18811248.2010.9711633

    Article  CAS  Google Scholar 

  40. Lyons LE, Young TL (1986) Alkaline selenide, polyselenide electrolytes: concentrations, absorption spectra and formal potentials. Aust J Chem 39:511–527. https://doi.org/10.1071/ch9860511

    Article  CAS  Google Scholar 

  41. Licht S, Forouzan F (1995) Speciation analysis of aqueous polyselenide solutions. J Electrochem Soc 142:1546–1551

    Article  CAS  Google Scholar 

  42. Miyawaki R, Sano T, Ohashi F, Suzuki M, Kogure T, Okumura T, Kameda J, Umezome T, Sato T, Chino D, Hiroyama K, Yamada H, Tamura K, Morimoto K, Uehara S, Hatta T (2010) Some reference data for the JCSS clay specimens (in Japanese). J Clay Sci Soc Jpn 48:158–198. https://doi.org/10.11362/jcssjnendokagaku.48.4_158

    Article  CAS  Google Scholar 

  43. Lee K, Kostka JE, Stucki JW (2006) Comparisons of structural fe reduction in smectites by bacteria and dithionite: an infrared spectroscopic study. Clays Clay Miner 54:195–208. https://doi.org/10.1346/CCMN.2006.0540205

    Article  CAS  Google Scholar 

  44. Gorski CA, Aeschbacher M, Soltermann D, Voegelin A, Baeyens B, Marques Fernandes M, Hofstetter TB, Sander M (2012) Redox properties of structural fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ Sci Technol 46:9360–9368. https://doi.org/10.1021/es3020138

    Article  CAS  PubMed  Google Scholar 

  45. Joe-Wong C, Brown GE Jr, Maher K (2017) Kinetics and products of chromium(VI) reduction by iron(II/III)-bearing clay minerals. Environ Sci Technol 51:9817–9825. https://doi.org/10.1021/acs.est.7b02934

    Article  CAS  PubMed  Google Scholar 

  46. Zavarin M, Powell BA, Bourbin M, Zhao P, Kersting AB (2012) Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite. Environ Sci Technol 46:2692–2698. https://doi.org/10.1021/es203505g

    Article  CAS  PubMed  Google Scholar 

  47. Begg JD, Zavarin M, Zhao P, Tumey SJ, Powell B, Kersting AB (2013) Pu(V) and Pu(IV) sorption to montmorillonite. Environ Sci Technol 47:5146–5153. https://doi.org/10.1021/es305257s

    Article  CAS  PubMed  Google Scholar 

  48. Neumann A, Olson TL, Scherer MM (2013) Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at clay mineral edge and basal sites. Environ Sci Technol 47:6969–6977. https://doi.org/10.1021/es304744v

    Article  CAS  PubMed  Google Scholar 

  49. Tournassat C, Greneche J-M, Tisserand D, Charlet L (2004) The titration of clay minerals I. Discontinuous backtitration technique combined with CEC measurements. J Colloid Interface Sci 273:224–233. https://doi.org/10.1016/j.jcis.2003.11.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was performed as a part of “The project for validating assessment methodology in geological disposal system” funded by the Ministry of Economy, Trade and Industry of Japan. Preliminary XAS measurement (data not shown) was performed at the SPring-8 beam line BL11XU under proposal No. 2016B3504. XAS measurements at the SPring-8 beam line BL14B1 were performed under proposal Nos. 2016B3613 and 2019A3609. XAS measurement at the Photon Factory beam line BL-12C was performed under proposal No. 2018G575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Sugiura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiura, Y., Tomura, T., Ishidera, T. et al. Sorption behavior of selenide on montmorillonite. J Radioanal Nucl Chem 324, 615–622 (2020). https://doi.org/10.1007/s10967-020-07092-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07092-x

Keywords

Navigation