Skip to main content
Log in

Influence of inherent iron and oxygen concentrations on selenite sorption process using bentonite

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The oxygen concentration and inherent Fe in bentonite have a significant influence on the Se(IV) sorption process. In this study, the sorption of selenite on natural bentonite was investigated using a batch experiment method, and the distribution coefficient (K d) values were obtained in the pH range from 2.0 to 10.0 under oxic/anoxic conditions. The K d values always reached a maximum value at a pH of 4 under oxic conditions and at a pH of 8 under anoxic conditions; meanwhile, the K d value under anoxic conditions was larger than the value under oxic conditions, especially in regard to the maximum K d values. The oxygen conditions have a significant influence on the ratio of redox-sensitive Fe2+/Fe3+, which was closely related to the difference in the K d values under both oxic/anoxic conditions. Ferric selenite and green rust could be responsible for the maximum K d values under oxic/anoxic conditions. In the leaching experiments, we found that the Fe2+ in bentonite could replace Mg2+ and Al3+ in the octahedral sheet. Spectroscopy methods, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) were used to characterize the surface properties of the samples after reaction. Overall, this study shows that the addition of Fe2+-containing materials into backfill/buffer materials under anoxic condition could enhance the sorption of 79Se(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J. J Rock Mech Geotechn Eng, 2010, 2: 1–11

    Google Scholar 

  2. Wu T, Li JY, Dai W, Xiao GP, Shu FJ, Yao J, Su YL, Shi L. Sci China Chem, 2012, 55: 1760–1764

    Article  CAS  Google Scholar 

  3. Lantenois S, Lanson B, Muller F, Bauer A, Jullien M, Plançon A. Clays Clay Miner, 2005, 53: 597–612

    Article  CAS  Google Scholar 

  4. Guillaume D, Neaman A, Cathelineau M, Mosser-Ruck R, Peiffert C, Abdelmoula M, Dubessy J, Villieras F, Baronnet A, Michau N. Clay Miner, 2003, 38: 281–302

    Article  CAS  Google Scholar 

  5. Guillaume D, Neaman A, Athelineau M, Mosser-Ruck R, Peiffert C, Abdelmoula M, Dubessy J, Villiéras F, Michau N. Clay Miner, 2004, 39: 17–34

    Article  CAS  Google Scholar 

  6. Carlson L, Karnland O, Oversby VM, Rance AP, Smart NR, Snellman M, Vähänen M, Werme LO. Phys Chem Earth Parts A/B/C, 2007, 32: 334–345

    Article  Google Scholar 

  7. Luengo C, Puccia V, Avena M. J Hazard Mater, 2011, 186: 1713–1719

    Article  CAS  Google Scholar 

  8. Wang H, Wu T, Chen J, Zheng Q, He C, Zhao Y. J Radioanal Nucl Chem, 2015, 303: 107–113

    Article  CAS  Google Scholar 

  9. Rayman MP. Brit J Nutr, 2008, 100: 254–268

    CAS  Google Scholar 

  10. Ma B, Nie Z, Liu CL, Kang ML, Bardelli F, Chen FR, Charlet L. Sci China Chem, 2014, 57: 1300–1309

    Article  CAS  Google Scholar 

  11. Charlet L, Kang M, Bardelli F, Kirsch R, Géhin A, Grenèche JM, Chen F. Environ Sci Technol, 2012, 46: 4869–4876

    Article  CAS  Google Scholar 

  12. Scheinost AC, Charlet L. Environ Sci Technol, 2008, 42: 1984–1989

    Article  CAS  Google Scholar 

  13. Badaut V, Schlegel ML, Descostes M, Moutiers G. Environ Sci Technol, 2012, 46: 10820–10826

    Article  CAS  Google Scholar 

  14. Parkhurst DL, Appelo C. User’s guide to PHREEQC: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Version 2. 1999

    Google Scholar 

  15. Olin Å, Noläng B, Osadchii EG, Öhman LO, Rosén E. Chemical Thermodynamics of Selenium. Holland: Elsevier Science, 2005. 39–53

    Google Scholar 

  16. Chivot J. Sci et Tech Ser, ANDRA, 2004: 34–35

    Google Scholar 

  17. Montavon G, Alhajji E, Grambow B. Environ Sci Technol, 2006, 40: 4672–4679

    Article  CAS  Google Scholar 

  18. Adhikamsetty RK, Gollapalli NR, Jonnalagadda SB. Int J Chem Kinet, 2008, 40: 515–523

    Article  CAS  Google Scholar 

  19. Luo L, Zhang SZ. Sci China Chem, 2010, 53: 2529–2538

    Article  CAS  Google Scholar 

  20. Dogan AU, Dogan M, Onal M, Sarikaya Y, Aburub A, Wurster DE. Clays Clay Miner, 2006, 54: 62–66

    Article  CAS  Google Scholar 

  21. Keller-Besrest F, Bénazeth S, Souleau C. Mater Lett, 1995, 24: 17–21

    Article  CAS  Google Scholar 

  22. Hou JN. Prog Soil Sci, 1987, 15: 10–17

    CAS  Google Scholar 

  23. Pardo MT, Guadalix ME. Geoderma, 1994, 63: 43–52

    Article  CAS  Google Scholar 

  24. Baik MH, Lee SY, Jeong J. J Environ Radioact, 2013, 126: 209–215

    Article  CAS  Google Scholar 

  25. Duc M, Lefèvre G, Fédoroff M. J Colloid Interface Sci, 2006, 298: 556–563

    Article  CAS  Google Scholar 

  26. Geering HR, Cary EE, Jones LHP, Allaway WH. Soil Sci Soc Am J, 1968, 32: 35–40

    Article  CAS  Google Scholar 

  27. Giester G. J Solid State Chem, 1993, 103: 451–457

    Article  CAS  Google Scholar 

  28. Nishimura T, Hata R, Hasegawa F. Molecules, 2009, 14: 3567–3588

    Article  CAS  Google Scholar 

  29. Chen YW, Truong HYT, Belzile N. Chemosphere, 2009, 74: 1079–1084

    Article  CAS  Google Scholar 

  30. Charlet L, Scheinost AC, Tournassat C, Greneche JM, Géhin A, Fernández-Martínez A, Coudert S, Tisserand D, Brendle J. GeoChim CosmoChim Acta, 2007, 71: 5731–5749

    Article  CAS  Google Scholar 

  31. Sankar G, Sarode PR, Rao CNR. Chem Phys, 1983, 76: 435–442

    Article  CAS  Google Scholar 

  32. Lin R, Spicer RL, Tungate FL, Davis BH. Colloid Surface A, 1996, 113: 79–96

    Article  CAS  Google Scholar 

  33. Refait P, Géhin A, Abdelmoula M, Génin JMR. Corros Sci, 2003, 45: 659–676

    Article  CAS  Google Scholar 

  34. Su CM, Wilkin RT. Arsenate and arsenite sorption on and arsenite oxidation by iron(II, III) hydroxycarbonate green rust. In: Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation. New York: American Chemical Society, 2005. 25–40

    Chapter  Google Scholar 

  35. Myneni SCB, Tokunaga TK, Brown Jr GE. Science, 1997, 278: 1106–1109

    Article  CAS  Google Scholar 

  36. He J, Ma B, Kang M, Wang C, Nie Z, Liu C. J Hazard Mater, 2017, 324: 564–572

    Article  CAS  Google Scholar 

  37. Tahir SS, Rauf N. J Environ Manage, 2004, 73: 285–292

    Article  CAS  Google Scholar 

  38. Bekri-Abbes I, Srasra E. J Alloys Compd, 2016, 671: 34–42

    Article  CAS  Google Scholar 

  39. Shannon RD. Acta Cryst A, 1976, 32: 751–767

    Article  Google Scholar 

  40. Vinšová H, Jedináková-Křížová V, Ožanová M. J Radioanal Nucl Chem, 2009, 281: 75–78

    Article  Google Scholar 

  41. Tabak A, Afsin B, Caglar B, Koksal E. J Colloid Interface Sci, 2007, 313: 5–11

    Article  CAS  Google Scholar 

  42. Tyagi B, Chudasama CD, Jasra RV. SpectroChim Acta Part A-Mol BioMol Spectr, 2006, 64: 273–278

    Article  Google Scholar 

  43. Hayati-Ashtiani M. Particul Sci Tech, 2012, 30: 553–564

    Article  CAS  Google Scholar 

  44. Eren E, Afsin B. J Hazard Mater, 2008, 151: 682–691

    Article  CAS  Google Scholar 

  45. Kïg I, Drodt M, Suess E, Trautwein AX. GeoChim CosmoChim Acta, 1997, 61: 1679–1683

    Article  Google Scholar 

  46. König I, Haeckel M, Drodt M, Suess E, Trautwein AX. GeoChim CosmoChim Acta, 1999, 63: 1517–1526

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Foundation for High-level Radioactive Waste Disposal (2007-840, 2012-851) and the National Natural Science Foundation of China (U1530112, 11475008, 11075006, 91026010). In addition, we are grateful to Prof. Xiangyun Wang for drawing the Eh-pH diagram of Se and Fe, and to the Beijing Synchrotron Radiation Facility for providing beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Qiao, X., Shi, Y. et al. Influence of inherent iron and oxygen concentrations on selenite sorption process using bentonite. Sci. China Chem. 60, 1258–1264 (2017). https://doi.org/10.1007/s11426-017-9091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9091-4

Keywords

Navigation