Skip to main content
Log in

Dose evaluation in a portable D–T neutron generator facility by Monte Carlo method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A portable NG-9 D–T generator can produce fast neutrons with 14 MeV energy in a maximum yield of 4 × 108 n/s. Shielding around the neutron emitter is necessary to protect the operators from radiation exposure. MCNP5 was used to evaluate the dose rates in a generic building with an activation room and corresponding six surrounding rooms. Several designs of shielding structure were evaluated to ensure that the total dose rates in surrounding rooms are all less than 5 µSv/h. The annual operating time can reach to at least 4081 h around the activation room for the final design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kasesaz Y, Rahmani F, Khalafi H (2015) Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT. Appl Radiat Isot 106:34–37. https://doi.org/10.1016/j.apradiso.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  2. Da-Qian H, Wen-Bao J, Zhou J et al (2016) Heavy metals detection in sediments using PGNAA method. Appl Radiat Isot 112:50–54. https://doi.org/10.1016/j.apradiso.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  3. Bagdasaryan KE, Batyaev VF, Belichenko SG et al (2015) Parameters of explosives detection through tagged neutron method. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 784:412–416. https://doi.org/10.1016/j.nima.2014.11.111

    Article  CAS  Google Scholar 

  4. Han MC, Jing SW, Gao YD, Guo Y (2019) Experiment and MCNP simulation of a portable tagged neutron inspection system for detection of explosives in a concrete wall. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 929:156–161. https://doi.org/10.1016/j.nima.2019.03.069

    Article  CAS  Google Scholar 

  5. Sun AY, Jia WB, Li JT et al (2019) Method for accurate position detection of landmine based on PGNAA technology. J Radioanal Nucl Chem 320:323–328. https://doi.org/10.1007/s10967-019-06498-6

    Article  CAS  Google Scholar 

  6. Kwak JG, Kim HS, Cheon MS et al (2016) Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography. Fusion Eng Des 109–111:608–612. https://doi.org/10.1016/j.fusengdes.2016.02.037

    Article  CAS  Google Scholar 

  7. Reyhancan IA, Ebrahimi A, Çolak Ü et al (2017) A Monte Carlo Library Least Square approach in the Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) process in bulk coal samples. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 843:29–33. https://doi.org/10.1016/j.nima.2016.10.058

    Article  CAS  Google Scholar 

  8. Naqvi AA, Kalakada Z, Al-Matouq FA et al (2012) Prompt gamma-ray analysis of chlorine in superpozz cement concrete. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 693:67–73. https://doi.org/10.1016/j.nima.2012.06.059

    Article  CAS  Google Scholar 

  9. Marchese N, Cannuli A, Caccamo MT, Pace C (2017) New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis. Biochim Biophys Acta Gen Subj 1861:3661–3670. https://doi.org/10.1016/j.bbagen.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  10. Bergaoui K, Reguigui N, Gary CK et al (2014) Monte Carlo simulation of explosive detection system based on a Deuterium–Deuterium (D–D) neutron generator. Appl Radiat Isot 94:118–124. https://doi.org/10.1016/j.apradiso.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  11. Katalenich J, Flaska M, Pozzi SA, Hartman MR (2011) Nuclear Instruments and Methods in Physics Research A High-fidelity MCNP modeling of a D–T neutron generator for active interrogation of special nuclear material. Nucl Inst Methods Phys Res A 652:120–123. https://doi.org/10.1016/j.nima.2010.08.053

    Article  CAS  Google Scholar 

  12. Cevallos LE, Felipe G, Fernández G et al (2018) Study by Monte Carlo methods of an explosives detection system made up with a D–D neutron generator and NaI (Tl) gamma detectors. Appl Radiat Isot 141:167–175. https://doi.org/10.1016/j.apradiso.2018.02.018

    Article  CAS  Google Scholar 

  13. Sharma MK, Alajo AB, Liu X (2014) MCNP modeling of a neutron generator and its shielding at Missouri University of Science and Technology. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 767:126–134. https://doi.org/10.1016/j.nima.2014.08.011

    Article  CAS  Google Scholar 

  14. Sahiner H, Norris ET, Bugis AA, Liu X (2017) Improved shielding design with an accelerated Monte Carlo simulation for a neutron generator at Missouri S&T. Prog Nucl Energy 97:123–132. https://doi.org/10.1016/j.pnucene.2017.01.005

    Article  CAS  Google Scholar 

  15. Ghassoun J, Senhou N, Jehouani A (2011) Neutron and photon doses in high energy radiotherapy facilities and evaluation of shielding performance by Monte Carlo method. Ann Nucl Energy 38:2163–2167. https://doi.org/10.1016/j.anucene.2011.06.020

    Article  CAS  Google Scholar 

  16. DiJulio DD, Cooper-Jensen CP, Perrey H et al (2017) A polyethylene-B4C based concrete for enhanced neutron shielding at neutron research facilities. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 859:41–46. https://doi.org/10.1016/j.nima.2017.03.064

    Article  CAS  Google Scholar 

  17. Shan Q, Chu S, Jia W (2015) Monte Carlo simulation of moderator and reflector in coal analyzer based on a D–T neutron generator. Appl Radiat Isot 105:204–208. https://doi.org/10.1016/j.apradiso.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Li G, Liu L (2014) Feasibility of sealed D–T neutron generator as neutron source for liver BNCT and its beam shaping assembly. Appl Radiat Isot 86:1–6. https://doi.org/10.1016/j.apradiso.2013.12.031

    Article  CAS  PubMed  Google Scholar 

  19. ICRP-International Commission on Radiological Protection, 2010. Conversion coefficients for radiological protection quantities for external radiation exposures. ICRP publication 116. Ann ICRP 40 (2–5)

  20. ICRP-International Commission on Radiological Protection, 1990. Recommendations of the international commission on radiological protection, ICRP publication 60, Ann. ICRP 21 (1–3)

  21. Chichester DL, Pierce GD (2007) Analysis of a shield design for a DT neutron generator test facility. Appl Radiat Isot 65:1125–1133. https://doi.org/10.1016/j.apradiso.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  22. X-5 Monte Carlo Team (2005) MCNP—a General Monte Carlo N-Particle transport code, Version 5. Los Alamos National Laboratory Report LAUR-03-1987

  23. Hernández-Adame PL, Medina-Castro D, Rodriguez-Ibarra JL et al (2016) Design of an explosive detection system using Monte Carlo method. Appl Radiat Isot 117:27–31. https://doi.org/10.1016/j.apradiso.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  24. ICRP-International Commission on Radiological Protection, 1996. Conversion coefficients for use in radiological protection against external radiation, ICRP Publication 74, Ann. ICRP 26 (47–54)

  25. Bergaoui K, Reguigui N, Brown C et al (2019) Evaluation of neutron and gamma dose in a new deuterium-deuterium fusion neutron generator facility using MCNP and experimental methods. Appl Radiat Isot 146:90–98. https://doi.org/10.1016/j.apradiso.2019.01.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Project of Jilin Province of China (20190303101SF), the Education Department Project of Sichuan Province of China (16ZA0325), and the Criminal Investigation Project in Key Laboratory of Sichuan Higher Education—Criminal Science and Technology Laboratory (Sichuan Police College) (2018YB04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Jing, S. & Xue, H. Dose evaluation in a portable D–T neutron generator facility by Monte Carlo method. J Radioanal Nucl Chem 324, 533–539 (2020). https://doi.org/10.1007/s10967-020-07090-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07090-z

Keywords

Navigation