Skip to main content
Log in

Dating of hot springs at Attri, Tarabalo and Athmalik sites in Odisha, India using radiocarbon technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study environmental radioisotopes of water (3H and 14C) were used to determine the residence time of thermal waters. The temperature of geothermal waters was found to be uniform (57.6 °C ± 0.75 °C) with similar field alkalinity and pH values. The δ13C values of thermal water ranged between − 21.3 and − 18.75‰, which clearly reflect no/minimum contribution of carbonate minerals to the system. Environmental tritium concentration was found to be very low in these thermal waters indicating insignificant recharge from modern sources. The Pearson modelled 14C ages were found to vary from 4964 to 17,714 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Ref. [16]

Fig. 3

Modified from Ref. [16]

Similar content being viewed by others

References

  1. Barbier E, Fanelli M, Gonfiantini R (1983) Isotopes in geothermal energy exploration. IAEA Bull 25(2):31–36

    Google Scholar 

  2. Pandey OP, Negi JG (1995) Geothermal fields of India: a latest update. In: Proceedings of the world geothermal congress, 1995: Florence, Italy, pp 163–171

  3. Pang Z (2005) Isotope techniques and geothermal resources management. In: Proceedings world geothermal congress, Antalya, Turkey, 24–29 April 2005

  4. Kumar B, Han LF, Wassenaar LI, Klaus PM, Kainz GG, Hillegonds D, Brummer D, Ahmad M, Belachew DL, Araguás L, Aggarwal P (2016) A compact tritium enrichment unit for large sample volumes with automated re-filling and higher enrichment factor. Appl Radiat Isot 118:80–86. https://doi.org/10.1016/j.apradiso.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  5. Plummer LN, Glynn P (2012) Radiocarbon dating in groundwater systems. In: Isotope Methods for Dating Old Groundwater, pp 33–89 https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1587_web.pdf

  6. Rama Sastri KS, Bhatia KKS, Bhism Kumar (eds) (2002) Chapter 1, Measurement of radiocarbon in natural water samples. In: Procedural manual (ver.1.0) measurement of radiocarbon and tritium in waters and cesium-137 & lead-210 in sediments. National Institute of Hydrology, Roorkee, pp 1–49

  7. Lindholm GF (1996) Summary of the Snake river plain regional aquifer system analysis in Idaho and Eastern Oregon. In: USGS professional paper 1408-A. https://pubs.usgs.gov/pp/1408a/report.pdf

  8. Thussu JL (2002) Geothermal energy resources of India. Geol Surv India Spec Pub 69:210

    Google Scholar 

  9. Ramakrishnan M, Nanda JK, Augustine PF (1998) Geological evolution of the Proterozoic Eastern Ghat Mobile Belt. Geol Surv India Special Publ 44:1–21

    Google Scholar 

  10. Chowdhury I, Ray B, Ali A (2011) Geology and mineral resources of Odisha. Geological Survey of India, Kolkata. Miscellaneous Publication No. 30, Part III—ODISHA, pp 1–74

  11. Maitra A, Chatterjee A, Keesari T, Gupta S (2019) Forming topography in granulite terrains: evaluating the role of chemical weathering. J Earth Syst Sci. https://doi.org/10.1007/s12040-019-1293-4

    Article  Google Scholar 

  12. Zimik HV, Farooq SH, Prusty P (2017) Geochemical evaluation of thermal springs in Odisha, India. Environ Earth Sci 76:593. https://doi.org/10.1007/s12665-017-6925-x

    Article  CAS  Google Scholar 

  13. IAEA, Water Resources Programme (2010) Sampling procedure for isotope hydrology. http://www-naweb.iaea.org/napc/ih/documents/other/Sampling%20booklet%20web.pdf

  14. Nair AR (1983) Possibilities of liquid scintillation counting for tritium and radio carbon measurements in natural water. In: Proceedings of the workshop on isotope hydrology. BARC, Mumbai, pp 41–56

  15. Pinti D (2011) Chronological history of life on earth. In: Gargaud M et al. (eds) Encyclopedia of astrobiology. Springer, Berlin. https://doi.org/10.1007/978-3-642-11274-4

    Chapter  Google Scholar 

  16. Sinha UK (2012) Application of isotope techniques to the assessment of aquifer system in urban centre, Ph.D. thesis submitted to Mumbai University

  17. Mohokar HV, Pant D, Sinha UK, Joseph TB (2015) Inter-comparison test for the determination of low-level tritium activities in natural waters for age dating purposes. In: First DAE-BRNS symposium on current trends in analytical chemistry (CTAC-2015), 26–29 May 2015

  18. Ground Water Year book (2016–2017) Central Ground Water Board, Ministry of Water Resources and Ganga Rejuvenation. South Eastern Region, Bhubaneswar, September 2017, p 237

  19. International Atomic Energy Agency, Vienna (1983) Guidebook on Nuclear Techniques in Hydrology. Technical Reports Series No. 91, pp 1–457

  20. Lucas LL, Unterweger MP (2000) Comprehensive review and critical of the half-life of tritium. J Res Nat Inst Stand Technol 105:541–549

    Article  CAS  Google Scholar 

  21. Morgenstern U, Taylor CB (2009) Ultra Low-level tritium measurement using electrolytic enrichment and LSC. Isotope Environ Health S. 45:96–117

    Article  CAS  Google Scholar 

  22. Shivanna K, Navada SV, Kulkarni KM, Sinha UK, Sharma S (1998) Application of Isotope Techniques to investigate Groundwater pollution in India. International Atomic Energy Agency (IAEA) Report, IAEA-TECDOC-1046, pp 167–184

  23. Navada SV, Nair AR, Sharma S, Kulkarni UP, (1993) Geochemical and isotope studies of the geothermal areas of central and northern India. In: proceedings of the final research co-ordination meeting on the application of Isotope and Geochemical Techniques to Geothermal Exploration in the Middle East, Asia, the Pacific and Africa held in Dumaguete City, Philippines, IAEA-TECDOC-788

  24. Robertson FN (1992) Radiocarbon dating of groundwater in a confined aquifer in Southeast Arizona. Radiocarbon 34(3):664–676

    Article  CAS  Google Scholar 

  25. Taylor RE (2016) Radiocarbon dating: development of a nobel method. In: Schuur E, Druffel E, Trumbore S (eds) Radiocarbon and climate change. Springer, Basel. https://doi.org/10.1007/978-3-319-25643-6_2

    Chapter  Google Scholar 

  26. Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology. Lewis, New York, p 328

    Google Scholar 

  27. Vogel JC (1970) Carbon-14 dating of groundwater. In: Isotope hydrology. IAEA symposium 129, Vienna, pp 225–239

  28. Tamers MA (1975) The validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239

    Article  Google Scholar 

  29. Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  30. Plummer NL, Prestemon EC, Parkhurst DL (1991) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 20. Water Resour Investig Rep 94:4169. https://doi.org/10.3133/wri944169

    Article  Google Scholar 

  31. Aggarwal PK, Araguás-Araguás L, Choudhry M, Michel VD, Froehlich K (2013) Lower groundwater C-14 Age by atmospheric CO2 uptake during sampling and analysis. Groundwater 52(1):20–24. https://doi.org/10.1111/gwat.12110

    Article  CAS  Google Scholar 

  32. Wood WW, Low WH (1988) Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon. Professional Paper 1408-D. https://doi.org/10.3133/pp1408D

  33. Kalaga DV, Kulkarni AV, Acharya R, Kumar U, Singh G, Joshi JB (2009) Some industrial applications of gamma-ray tomography. J Taiwan Inst Chem Eng 40:602–612

    Article  CAS  Google Scholar 

  34. Keesari T, Roy A, Mohokar H, Pant D, Sinha UK (2019) Characterization of mechanisms and processes controlling groundwater recharge and its quality in drought prone region of Central India using isotope hydrochemical and end member mixing modeling. Natl Resour Res. https://doi.org/10.1007/s11053-019-09550-0

    Article  Google Scholar 

  35. Keesari Tirumalesh, Diana AS, Madhuri SR, Pant Diksha, Mohokar HV, Jaryal Ajay, Sinha UK (2017) Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab. Appl Radiat Isot 129:163–170

    Article  CAS  Google Scholar 

  36. Diana AS, Tirumalesh K, Madhuri SR, Diksha P (2018) A study on the role of hydrogeology on the distribution of uranium in alluvial aquifers of northwest India. Environ Monitor Assess 190(12):746. https://doi.org/10.1007/s10661-018-7112-6

    Article  CAS  Google Scholar 

  37. Tirumalesh K, Uday KS (2019) Paleo-seawater of Kutch region, Gujarat. Curr Sci 116(8):1–4

    Google Scholar 

  38. Sharma OP (2017) Geothermal energy in India: current status and future dimensions. In: Chandel A, Sukumaran R (eds) Sustainable biofuels development in India. Springer, Cham, pp 73–85. https://doi.org/10.1007/978-3-319-50219-9

    Chapter  Google Scholar 

  39. Chatterjee S, Gusyev MA, Sinha UK, Mohokar HV, Dash A (2019) Understanding water circulation with tritium tracer in the Tural-Rajwadi geothermal area, India. Appl Geochem 109:104373. https://doi.org/10.1016/j.apgeochem.2019.104373

    Article  CAS  Google Scholar 

  40. Chatterjee S, Sinha UK, Biswal BP, Jaryal A, Jain PK, Patbhaje S, Dash A (2019) An integrated isotope-geochemical approach to characterize a medium enthalpy geothermal system in India. Aquat Geochem 25(2019):63–89. https://doi.org/10.1007/s10498-019-09352-z

    Article  CAS  Google Scholar 

  41. Dacillo D, Salonga N (2005) Conceptual flow patterns from stable isotope systematics of the Mahanagdong geothermal field, Philippines. In: Pang Z, Truesdell A (eds) 2005, Special Issue of isotope techniques in geothermal investigations. Geothermics

Download references

Acknowledgements

Authors sincerely acknowledge the constant support and encouragement by Dr. P.K. Pujari Associate Director, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai. The authors are also grateful to officers of the GSI, Nagpur for their support in sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirumalesh Keesari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keesari, T., Chatterjee, S., Pant, D. et al. Dating of hot springs at Attri, Tarabalo and Athmalik sites in Odisha, India using radiocarbon technique. J Radioanal Nucl Chem 323, 1227–1235 (2020). https://doi.org/10.1007/s10967-019-06867-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06867-1

Keywords

Navigation