Skip to main content
Log in

Effect of different concentrations of sulfuric acid on leaching of radionuclide isotopes in sedimentary rock samples, Sinai, Egypt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This research focused on studying the effect of sulfuric acid concentrations on the leaching of different radionuclides (238U and 235U series) in two samples (high- and low-grade). The activity concentrations of radionuclides in the uranium series (238U and 235U) were measured by an HPGe detector. The leaching efficiency of 238U and 235U series was different in the samples and the leaching percent of 230Th was the highest in the samples, which may be due to the presence of the organic matter. There are radioactive disequilibria between 238U, 234U and 230Th in leachate and residual phase due to redistribution between acid-soluble and acid-resistant phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khandaker MU, Jojo PJ, Kassim HA (2012) Determination of primordial radionuclides in natural samples using HPGe gamma-ray spectrometry. APCBEE Procedia 1:187–192. https://doi.org/10.1016/j.apcbee.2012.03.030

    Article  CAS  Google Scholar 

  2. Dosseto A, Bourdon B, Gaillardet J, Allègre CJ, Filizola N (2006) Timescale and conditions of chemical weathering under tropical climate: the study of the Amazon basin with U-series. Geochim Cosmochim Acta 70(1):71–89

    Article  CAS  Google Scholar 

  3. Dosseto A, Bourdon B, Gaillardet J, Maurice-Bourgoin L, Allègre CJ (2006) Weathering and transport of sediments in the Bolivian Andes: time constraints from uranium-series isotopes. Earth Planet Sci Lett 248:759–771

    Article  CAS  Google Scholar 

  4. Dawood YH (2010) Factors controlling uranium and thorium isotopic composition of the streambed sediments of the River Nile, Egypt. J King Abdulaziz Univ Earth Sci 21(2):77–103. https://doi.org/10.4197/ear.21-2.4

    Article  Google Scholar 

  5. Clark DL, Neu MP, Runde W, Keogh DW (2006) Uranium and uranium compounds. Kirk Othmer Encycl Chem Technol 92:1–53. https://doi.org/10.1002/0471238961.2118011403120118.a01.pub3

    Article  Google Scholar 

  6. Bhargava SK, Ram R, Pownceby M, Grocott S, Ring B, Tardio J, Jones L (2015) A review of acid leaching of uraninite. Hydrometallurgy 151:10–24. https://doi.org/10.1016/j.hydromet.2014.10.015Review

    Article  CAS  Google Scholar 

  7. Al Shamsi DM (2014) Natural radioactivity in groundwaters, rocks and sediments from some areas in the UAE: distribution, sources and environmental impact. Ph.D. thesis, College of Science, United Arab Emirates University, 164 pp

  8. Khawassek Y, Eliwa A, Haggag E, Mohamed S, Omar S (2016) Kinetics leaching process of uranium ions from El-Erediya rock by sulfuric acid solution. Int J Nucl Energy Sci Eng 6:35–48. https://doi.org/10.14355/ijnese.2016.06.004

    Article  Google Scholar 

  9. Kraiz AH, Fathy WM, Abu HA, Ramadan AM, Moharam MR (2016) Leachability of uranium from low grade uraniferous Granites, Eastern Desert, Egypt. Int Res J Eng Technol 3(1):775–782

    Google Scholar 

  10. Khawassek YM, Taha MH, Eliwa AA (2016) Kinetics of leaching process using sulfuric acid for sella uranium ore material, South Eastern Desert, Egypt. Int J Nucl Energy Sci Eng 6:62–73. https://doi.org/10.14355/ijnese.2016.06.006

    Article  Google Scholar 

  11. Mahdy MA, El-Hazek MN (1996) Leaching characteristics of wadibelihurani ferrous Hammamat sediments, Eastern Desert, Egypt. In: Third Arab conference on the peaceful uses of atomic energy, Damascus, pp 389–394

  12. Guettaf H, Becis A, Ferhat K, Hanou K, Bouchiha D, Yakoubi K, Ferrad F (2009) Concentration-purification of uranium from an acid leaching solution. Phys Procedia 2(3):765–771. https://doi.org/10.1016/j.phpro.2009.11.023

    Article  CAS  Google Scholar 

  13. Nagar MS, Shahin HA, Bahige M (2016) Column percolation leaching of uranium from El-Sela Area, South Eastern Desert, Egypt. Res Rev J Chem 5(4):32–41

    CAS  Google Scholar 

  14. Zeng S, Zhang N, Zhang S, Sun B, Tan K, Duan X, Du X (2019) Fractal characteristics of uranium-bearing sandstone structure and their effects on acid leaching. Energy Sci Eng. https://doi.org/10.1002/ese3.396

    Article  Google Scholar 

  15. Cheru MS, Velázquez A, Yimam A, Berhe GG (2019) Hydrometallurgical removal of uranium and thorium from Ethiopian tantalite ore. Physicochem Probl Miner Proc 55(2):448–457. https://doi.org/10.5277/ppmp18153

    Article  Google Scholar 

  16. Tucker ME (2012) Sedimentary rocks in the field: a practical guide. Environ Eng Geosci 18(4):401–402. https://doi.org/10.2113/gseegeosci.18.4.401-b

    Article  Google Scholar 

  17. Walter E, Dean JR (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44(1):242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  18. Stabin MG (2007) Radiation protection and dosimetry: an introduction to health physics. Springer, New York. ISBN 978-0-387-49982-6

    Google Scholar 

  19. Nada A (2012) Distribution of radionuclides in the leachates for several rock types at different time intervals. Life Sci J 9(4):241–248

    Google Scholar 

  20. Ramebäck H, Vesterlund A, Tovedal A, Nygren U, Wallberg L, Holm E, Skarnemark G (2010) The jackknife as an approach for uncertainty assessment in gamma spectrometric measurements of uranium isotope ratios. Nucl Instrum Methods Phys Res B 268(16):2535–2538

    Article  Google Scholar 

  21. Yücel H, Çetiner MA, Demirel H (1998) Use of the 1001 keV peak of 234mPa daughter of 238U in measurement of uranium concentration by HPGe gamma-ray spectrometry. Nucl Inst Methods Phys Res A 413(1):74–82. https://doi.org/10.1016/S0168-9002(98)00562-2

    Article  Google Scholar 

  22. Rekha AK, Dingankar MV, Anilkumar S, Narayani K, Sharma DN (2006) Determination of the activity ratios of 231Pa to 235U and 227Th to 235U in ore samples using gamma-spectrometry. J Radioanal Nucl Chem 268(3):453–460. https://doi.org/10.1007/s10967-006-0190-x

    Article  CAS  Google Scholar 

  23. www.Table of radioactive isotopes NSR (Nuclear Science Reference data version 1990–1998)

  24. Yokoyama Y, Falguères C, Sémah F, Jacob T, Grün R (2008) Gamma-ray spectrometric dating of late Homo erectus skulls from Ngandong and Sambungmacan, Central Java, Indonesia. J Hum Evol 55(2):274–277. https://doi.org/10.1016/j.jhevol.2008.01.006

    Article  PubMed  Google Scholar 

  25. Simpson JJ, Grün R (1998) Non-destructive gamma spectrometric U-series dating. Quat Geochronol 17(11):1009–1022. https://doi.org/10.1016/S0277-3791(97)00088-7

    Article  Google Scholar 

  26. El Aassy IE, El Feky MG, El Kasaby MA, Ibrahim EM, Sewefi S, Attia RM (2017) Behavior of radionuclides during acidic leaching processes of different rock materials, Allouga locality, southwestern Sinai, Egypt. Int J Sci Eng Res 8(1):1135–1147

    Google Scholar 

  27. Bakr WF (2014) Analytical method validation of gamma spectrometric procedure for the determination of Υ-emitters in environmental samples. Arab J Nucl Sci Appl 47(3):130–138

    Google Scholar 

  28. Saïdou F, Laedermann JP, Kwato Njock MG, Froidevaux P (2008) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. Appl Radiat Isot 66(2):215–222. https://doi.org/10.1016/j.apradiso.2007.07.034

    Article  CAS  PubMed  Google Scholar 

  29. United Sates Department of Energy (USDOE) (1992) Environmental measurement laboratory procedure manual, 27th edn (revised). HASL-300, Environmental Measurement Laboratory-USDOE, New York, pp 4.5.29

  30. Imtiaz MA, Begum A, Mollah AS, Zaman MA (2005) Measurements of radioactivity in books and calculations of resultant eye doses to readers. Health Phys 88(2):169–174. https://doi.org/10.1097/01.HP.0000146583.34944.6d

    Article  CAS  PubMed  Google Scholar 

  31. Jibiri NN, Bankole OS (2006) Soil radioactivity and radiation absorbed dose rates at roadsides in high-traffic density areas in Ibadan metropolis, southwestern Nigeria. Radiat Prot Dosimetry 118(4):453–458. https://doi.org/10.1093/rpd/nci364

    Article  CAS  PubMed  Google Scholar 

  32. Satybaldiyev B, Lehto J, Suksi J, Tuovinen H (2015) Understanding sulphuric acid leaching of uranium from ore by means of 234U / 238U activity ratio as an indicator. Hydrometallurgy 155:125–131. https://doi.org/10.1016/j.hydromet.2015.04.017

    Article  CAS  Google Scholar 

  33. Aitken U, Takeshita K, Matsura S, Foundation S, Ikeya M (1980) Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects. Science 207(1):979–981. https://doi.org/10.1126/science.207.4434.979

    Article  Google Scholar 

  34. Spirakis CS (1996) The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol Rev 8:53–69

    Article  Google Scholar 

  35. Shiobara R, Komatsubara K, Kurihara Y, Nomura K, Koike Y (2017) Radioactive characteristics and leaching behavior of Ra and Th isotopes on ishikawaite. J Radioanal Nucl Chem 313(2):361–370. https://doi.org/10.1007/s10967-017-5325-8

    Article  CAS  Google Scholar 

  36. McMaster SA, Ram R, Faris N, Pownceby MI, Tardio J, Bhargava SK (2017) Uranium leaching from synthetic betafite: [(Ca, U)2(Ti, Nb, Ta)2O7]. Int J Miner Process 160:58–67. https://doi.org/10.1016/j.minpro.2017.01.011

    Article  CAS  Google Scholar 

  37. Venter R, Boylett M, (2009) The evaluation of various oxidants used in acid leaching of uranium. Hydrometallurgy Conference, Southern African Inst Min Metall 445–456

  38. Siddeeg SEMB (2013) Geochemistry of natural radionuclides in uranium-enriched river catchments. PhD thesis, Faculty of Engineering and Physical Science, University of Manchester, 189 pp

  39. Plater AJ, Ivanovich M, Dugdale RE (1992) Uranium series disequilibrium in river sediments and waters: the significance of anomalous activity ratios. Appl Geochem 7(2):101–110. https://doi.org/10.1016/0883-2927(92)90029-3

    Article  CAS  Google Scholar 

  40. Abdelouas A (2006) Uranium mill tailings: and environmental impact. Elements 2(6):335–342. https://doi.org/10.2113/gselements.2.6.335

    Article  CAS  Google Scholar 

  41. White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202(3–4):479–506

    Article  CAS  Google Scholar 

  42. Abd El-Halim ES, Sroor A, El-Bahi SM, El-Aassy IE, El Sheikh EM, Musa KM (2017) Factors controlling radionuclides migration within different media. IOSR JAP 9(6 Ver.III):34–41

    Google Scholar 

  43. El Aassy IE, Nada AA, El Galy MM, El Feky MG, Abd El Maksoud TM, Talaat SM, Ibrahim EM (2012) Behavior and environmental impacts of radionuclides during the hydrometallurgy of calcareous and argillaceous rocks, southwestern Sinai, Egypt. Appl Radiat Isot 70(6):1024–1033

    Article  Google Scholar 

  44. Kumar A, Karpe RK, Rout S, Gautam YP, Mishra MK, Ravi PM, Tripathi RM (2016) Activity ratios of 234U/238U and 226Ra/228Ra for transport mechanisms of elevated uranium in alluvial aquifers of groundwater in south-western (SW) Punjab, India. J Environ Radioact 151:311–320. https://doi.org/10.1016/j.jenvrad.2015.10.020

    Article  CAS  PubMed  Google Scholar 

  45. Bondarenko G, Sobotovich EV (2006) Isotope fractionation of uranium in the process of leaching of nuclides of dispersed fuel of RBMK of the Chernobyl NPP (044), pp 93–103

Download references

Acknowledgements

We appreciate the members of Nuclear Physics Laboratory (1), Physics Department, Faculty of Women for Art, Science and Education, Ain Shams University. Also, we thank the National Institute of Oceanography and Fisheries. We would like to thank Dr. Mostafa Darwish, Egyptian Nuclear and Radiological Regulatory Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nada, A., Imam, N., El Aassy, I.E. et al. Effect of different concentrations of sulfuric acid on leaching of radionuclide isotopes in sedimentary rock samples, Sinai, Egypt. J Radioanal Nucl Chem 322, 347–359 (2019). https://doi.org/10.1007/s10967-019-06754-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06754-9

Keywords

Navigation