Skip to main content
Log in

Superheavy nuclei and hypernuclei: extending the limits of the nuclear chart

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Emergence of superheavy nuclei and hypernuclei, two fields of intense research in nuclear physics, has made a big impact on the nuclear chart; while the discovery of the superheavy oganesson has completed the seven full rows of the periodic table, discovery of several exotic hypernuclei have added a third dimension, called strangeness, to the existing nuclear chart. Highlights of some recent developments in these two fields are presented

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nilsson SG, Nix JR, Sobiczewski A, Szymaski Z, Wycech S, Gustafson C, Mller P (1968) On the spontaneous fission of nuclei with Z near 114 and N near 184. Nucl Phys A 115:545

    Article  CAS  Google Scholar 

  2. Mosel U, Greiner W (1968) Investigation of the collective potential-energy-surface. Z Phys 217:256

    Article  CAS  Google Scholar 

  3. Nilsson SG et al (1969) On the nuclear structure and stability of heavy and superheavy elements. Nucl Phys A 131:1

    Article  CAS  Google Scholar 

  4. Fiset EO, Nix JR (1972) Calculation of half-lives for superheavy nuclei. Nucl Phys A 193:647

    Article  CAS  Google Scholar 

  5. Mnzenberg G, Armbruster P, Folger H, Hessberger FP, Hofmann S, Keller J, Poppensieker K, Reisdorf W, Schmidt K-H, Schtt H-J, Leino ME, Hingman R (1984) The identification of element 108. Z Phys A Atoms Nucl 317:235

    Article  Google Scholar 

  6. Patyk Z, Sobiczewski A, Armbruster P, Schmidt KH (1989) Shell effects in the properties of the heaviest nuclei. Nucl Phys A 491:267

    Article  Google Scholar 

  7. Moller P, Nix JR (1994) Stability of heavy and superheavy elements. J Phys G Nucl Phys 20:1681

    Article  Google Scholar 

  8. Armbruster P (2003) On the production of superheavy elements. Acta Phys Pol B 34:1825

    CAS  Google Scholar 

  9. Hofmann S et al (1995) Production and decay of 269110. Z Phys A 350:277

    Article  CAS  Google Scholar 

  10. Hofmann S et al (2007) The reaction 48Ca + 238U 286112 studied at the GSI-SHIP. Eur Phys J A 32:251

    Article  CAS  Google Scholar 

  11. Morita K et al (2004) Experiment on the synthesis of element 113 in the reaction 209Bi (70Zn, n) 278113. J Phys Soc Jpn 73:2593

    Article  CAS  Google Scholar 

  12. Morita K et al (2007) Observation of second decay chain from 278113. J Phys Soc Jpn 76:045001

    Article  CAS  Google Scholar 

  13. Hamilton H, Hofmann S, Oganessian YT (2013) Search for superheavy nuclei. Ann Rev Nucl Sci 63:383

    Article  CAS  Google Scholar 

  14. Oganessian YT, Utyonkov VK (2015) Super-heavy element research. Rep Prog Phys 78:036301

    Article  CAS  PubMed  Google Scholar 

  15. Ćwiok S, Heenen P-H, Nazarewicz W (2005) Shape coexistence and triaxiality in the superheavy nuclei. Nature 433:705

    Article  CAS  PubMed  Google Scholar 

  16. Bender M, Nazarewicz W, Reinhard P-G (2001) Shell stabilization of super-and hyperheavy nuclei without magic gaps. Phys Lett B 515:42

    Article  CAS  Google Scholar 

  17. Samanta C, Roy ChowdhuryP, Basu DN (2007) Predictions of alpha decay half lives of heavy and superheavy elements. Nucl Phys A 789:142

    Article  CAS  Google Scholar 

  18. Samanta C, Basu DN, Roy ChowdhuryP (2007) Quantum tunneling in 277112 and its alpha-decay chain. J Phys Soc Jpn 76:124201

    Article  CAS  Google Scholar 

  19. Roy ChowdhuryP, Basu DN, Samanta C (2007) Alpha decay chains from element 113. Phys Rev C 75:047306

    Article  CAS  Google Scholar 

  20. Roy ChowdhuryP, Samanta C, Basu DN (2008) Search for long lived heaviest nuclei beyond the valley of stability. Phys Rev C 77:044603

    Article  CAS  Google Scholar 

  21. Roy ChowdhuryP, Samanta C, Basu DN (2008) Nuclear lifetimes for alpha radioactivity of elements with 100 ≤ Z ≤ 130. Nucl Data At Data Tables 94:781

    Article  CAS  Google Scholar 

  22. Roy ChowdhuryP, Samanta C, Basu DN (2006) α decay half-lives of new superheavy elements. Phys Rev C 73:014612

    Article  CAS  Google Scholar 

  23. Oganessian Yu, Ts UtyonkovVK, Lobanov YuV, Sh AbdullinF, Polyakov AN, Sagaidak RN, Shirokovsky IV, Tsyganov YuS et al (2006) Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys Rev C 74:044602

    Article  CAS  Google Scholar 

  24. Royer G, Gherghescu RA (2002) On the formation and alpha decay of superheavy elements. Nucl Phys A 699:479

    Article  Google Scholar 

  25. Myers WD, Swiatecki WJ (1996) Nuclear properties according to the Thomas–Fermi model. Nucl Phys A 601:141

    Article  Google Scholar 

  26. Muntian I, Patyk Z, Sobiczewski A (2001) Sensitivity of calculated properties of superheavy nuclei to various changes. Acta Phys Pol B 32:691

    CAS  Google Scholar 

  27. Muntian I, Hofmann S, Patyk Z, Sobiczewski A (2003) Fission properties of super-heavy nuclei. Acta Phys Pol B 34:2073

    CAS  Google Scholar 

  28. Muntian I, Hofmann S, Patyk Z, Sobiczewski A (2003) Properties of heaviest nuclei. Acta Phys Pol B 34:2073

    CAS  Google Scholar 

  29. Sobiczewski A, Patyk Z, Ćwiok S (1989) Deformed superheavy nuclei. Phys Lett B 224:1

    Article  CAS  Google Scholar 

  30. Hoffman DC, Lee DM, Pershina V (2006) Transactinides and the future elements. In: Morss E, Norman M, Fuger J (eds) The chemistry of the actinide and transactinide elements, 3rd ed. Springer, Dordrecht. ISBN 1-4020-3555-1

  31. Hopper D, Biswas S (1950) Evidence concerning the existence of the new unstable elementary neutral particle. Phys Rev 80:1099

    Article  CAS  Google Scholar 

  32. Danysz M, Pniewski J (1953) Delayed disintegration of a heavy nuclear fragment: I. Philos Mag 44:348

    Article  CAS  Google Scholar 

  33. Akira Ohnishi, Kenji Morita, Takenori Furumoto (2017) Lambda–Lambda interaction from two-particle intensity correlation in relativistic heavy-ion collisions. JPS Conf Proc 17:031003

    Google Scholar 

  34. Tang L et al (2014) Experiments with high resolution kaon spectrometer at JLab Hall C and the new spectroscopy of \(\begin{array}{*{20}c} {12} \\ \varLambda \\ \end{array} {\text{B}}\) hypernuclei. Phys Rev C 90:034320

  35. Gogami T et al (2016) Spectroscopy of the neutron-rich hypernucleus \(\begin{array}{*{20}c} 7 \\ \varLambda \\ \end{array} {\text{He}}\) from electron scattering. Phys Rev 94:021302(R)

  36. Gogami T et al (2016) High resolution spectroscopy study of \(\begin{array}{*{20}c} {10} \\ \varLambda \\ \end{array} {\text{Be}}\). Phys Rev C93:034314

  37. Nakazawa K et al (2015) Study of double-strangeness nuclear systems with nuclear emulsion. Phys Procedia 80:69

    Article  CAS  Google Scholar 

  38. Nakazawa K et al (2014) Progress on the study of double-Lambda hypernuclei. J Phys Conf 569:012082

    Article  Google Scholar 

  39. Nakazawa K (2010) for KEK-E176, E373 and J-pane E07, Double Λ hypernuclei via the Ξ-hyperon capture at rest reactions in a hybrid emulsion. Nucl Phys A 835:207

    Article  CAS  Google Scholar 

  40. Davis DH (2005) 50 years of hypernuclear physics: I. The early experiments. Nucl Phys A 754:3

    Article  CAS  Google Scholar 

  41. Hasegawa T et al (1996) Spectroscopic study of 10B, 12C, 28Si, 89Y, 139La and 208Pb by the (π + , K +) reaction. Phys Rev C 53:1210

    Article  CAS  Google Scholar 

  42. Bodmer AR, Usmani QN (1985) Coulomb effects and charge symmetry breaking for the A = 4 hypernuclei. Phys Rev C 31:1400

    Article  CAS  Google Scholar 

  43. Bando H, Motoba T, Zofka J (1990) Production, structure and decay of hypernuclei. Int J Mod Phys A 5:4021

    Article  CAS  Google Scholar 

  44. Miller GA, Opper AK, Stepenson EJ (2006) Charge symmetry breaking and QCD. Ann Rev Nucl Sci 56:253

    Article  CAS  Google Scholar 

  45. Gal A, Millener DJ (2011) Shell model predictions for Lambda–Lambda hypernuclei. Phys Lett B 701:342

    Article  CAS  Google Scholar 

  46. Gal A (2015) Charge symmetry breaking in Λ hypernuclei revisited. Phys Lett B 744:352

    Article  CAS  Google Scholar 

  47. Achenbach P (2017) Charge symmetry breaking in light hypernuclei. Few-Body Syst 58(1):17

    Article  CAS  Google Scholar 

  48. Botta E, Bressani T, Feliciello A (2017) On the binding energy and the charge symmetry breaking in A ≤ 16Λ-hypernuclei. Nucl Phys A 960:165

    Article  CAS  Google Scholar 

  49. Hiyama Emiko and Nakazawa Kazuma (2018) Structure of S = 2 hypernuclei and hyperon–hyperon interactions. Annu Rev Nucl Sci 68:131

    Article  CAS  Google Scholar 

  50. Schmitt TA, Samanta C (2018) A-dependence of Λ–Λ-bond and charge symmetry energies. EPJ Web Conf 182:03012

    Article  CAS  Google Scholar 

  51. Samanta C (2018) Superheavy nuclei to hypernuclei: a tribute to Walter Greiner. EPJ Web Conf 182:02107

    Article  CAS  Google Scholar 

  52. Samanta C (2010) Genaralized mass formula for non-strange, strange, and multiply strange nuclear systems. J Phys G 37:075104

    Article  CAS  Google Scholar 

  53. Samanta C, Roy ChaudhuryP, Basu DN (2008) Lambda hyperonic effect on the normal driplines. J Phys G 35:065101

    Article  CAS  Google Scholar 

  54. Samanta C, Roy ChaudhuryP, Basu DN (2006) Genaralized mass formula for non-strange and hypernuclei with SU(6) symmetry breaking. J Phys G 32:363

    Article  CAS  Google Scholar 

  55. Hu JN, Li A, Shen H, Toki H (2014) Quark mean field model for single and double lambda hypernuclei. Prog Theor Exp Phys 2014:013D02

    Article  CAS  Google Scholar 

  56. Gal A, Hungerford EV, Millener DJ (2016) Strangeness in nuclear physics. Rev Mod Phys 88:035004

    Article  Google Scholar 

  57. Feliciello A, Nagae T (2015) Experimental review of hypernuclear physics: recent achievements and future perspectives. Rep Prog Phys 78:096301

    Article  CAS  PubMed  Google Scholar 

  58. Bogdan Povh (1987) Nuclear physics with strange particles. Prog Nucl Phys 18:183

    Article  Google Scholar 

  59. Botvina AS, Pochodzalla J (2007) Production of hypernuclei in multifragmentation of nuclear spectator matter. Phys Rev C 76:024909

    Article  CAS  Google Scholar 

  60. Samanta C, Schmitt TA Binding, bonding and charge symmetry breaking in Λ hypernuclei. AIP Conf Proc (in press); arXiv:1710.08036v2 [nucl-th]

  61. Buyukcizmeci N, Botvina AS, Pochodzalla J, Bleicher M (2013) Mechanisms for the production of hypernuclei beyond the neutron and proton drip lines. Phys Rev C 88:014611

    Article  CAS  Google Scholar 

  62. Buyukcizmeci N, Botvina AS, Ogul R (2018) Investigation of binding energies of lambda hypernuclei. Nucl Theory 37:155

    Google Scholar 

  63. Hayano RS, Ishikawa T, Iwasaki M, Outa H, Takada E, Tamura H, Sakaguchi A, Aoki M, Yamazaki T (1989) Observation of a bound state of 4He (Σ) hyper-nucleus. Phys Lett B 231:355

    Article  CAS  Google Scholar 

  64. Owen Chamberlain, Emilio Segré, Clyde Wiegand, Thomas Ypsilantis (1955) Observation of antiprotons. Phys Rev 100:947

    Article  Google Scholar 

  65. Bruce Cork, Lambertson Glen R, Oreste Piccioni, Wenzel William A (1956) Antineutrons produced from antiprotons in charge-exchange collisions. Phys Rev 104:1193

    Article  Google Scholar 

  66. Antipov YM et al (1974) Observation of antihelium 3. Yad Fiz 12:311 (in Russian)

    Google Scholar 

  67. Collaboration STAR (2011) Observation of the antimatter helium-4 nucleus. Nature 473:353

    Article  CAS  Google Scholar 

  68. Ma YG, Chen JH, Xue L (2012) A brief review of antimatter production. Front Phys 7:637. arXiv:1301.4902v1 [nucl-ex]

  69. The STAR Collaboration (2010) Observation of an antimatter hypernucleus. Science 328:58

    Article  CAS  Google Scholar 

  70. Collaboration ALICE (2015) Precision measurement of the mass difference between light nuclei and anti-nuclei. Nat Phys 11:811

    Article  CAS  Google Scholar 

  71. ALICE Collaboration (2016) 3 ΛH and \(\begin{array}{*{20}c} 3 \\ \bar \Lambda\\ \end{array} \bar H\) production in Pb-Pb collisions at \(\surd (S_{NN} ) = \, 2.76\) TeV. Phys Lett B 754:360

Download references

Acknowledgements

The author would like to thank the Virginia Military Institute for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhanda Samanta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, C. Superheavy nuclei and hypernuclei: extending the limits of the nuclear chart. J Radioanal Nucl Chem 322, 205–211 (2019). https://doi.org/10.1007/s10967-019-06677-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06677-5

Keywords

Navigation