Skip to main content
Log in

Migration characteristics study of iodine in crushed Beishan granite column under dynamic flow condition

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The migration of iodine on Beishan granite was studied by the dynamic column method using an UV detector. Migration parameters, such as distribution coefficient (Kd) and dispersion coefficient (Dd), can be obtained by fitting the breaking through curve. Kd was around 0.15 cm3 g−1 under all studied conditions except particle size. Dd was greatly influenced by the flow rate and eluent pH. The effect of speciation was not obvious. The appropriate I concentration range for this method was 10−4–10−3 mol L−1. The results in this work are consistent with the previous works using radioactivity measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IAEA (2003) Scientific and technical basis for geological disposal of radioactive wastes. Technical Report Series No. 413, Vienna

  2. Alexander WR, Smith PA, McKinley IG (2003) Modelling radionuclide transport in the geological environment. In: Scott EM (ed) Modelling radioactivity in the environment. Elsevier, Amsterdam, pp 109–145

    Chapter  Google Scholar 

  3. Palagyi S, Stamberg K, Vopalka D (2015) A simplified approach to evaluation of column experiments as a tool for determination of radionuclide transport parameters in rock-groundwater or soil-groundwater systems. J Radionanal Nucl Chem 304:945–954

    Article  CAS  Google Scholar 

  4. Choi JW, Oscarson DW (1996) Diffusive transport through compacted Na- and Ca-bentonite. J Contam Hydrol 22(3–4):189–202

    Article  CAS  Google Scholar 

  5. Tsai SC, Ouyang S, Hsu CN (2001) Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite. Appl Radiat Isot 54:209–215

    Article  CAS  PubMed  Google Scholar 

  6. Boving TB, Grathwohl P (2001) Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J Contam Hydrol 53:85–100

    Article  CAS  PubMed  Google Scholar 

  7. Palagyi S, Laciok A (2006) Sorption, desorption and extraction of uranium from some sands under dynamic conditions. Czechoslov J Phys 56:483–492

    Article  Google Scholar 

  8. Palagyi S, Vodickova H et al (2009) Migration and sorption of 137Cs and 152,154Eu in crushed crystalline rocks under dynamic conditions. J Radioanal Nucl Chem 279:431–441

    Article  CAS  Google Scholar 

  9. Palagyi S, Stamberg K, Vopalka D (2016) Simplified modeling in dynamic column technique for the determination of radionuclide transport parameters in systems of solid granular materials and groundwater. J Radionanal Nucl Chem 311(2):1059–1073

    Article  CAS  Google Scholar 

  10. Holta P, Siitari-Kauppi M et al (1997) Radionuclide transport and retardation in rock fracture and crushed rock column experiments. J Contam Hydrol 26(1):135–145

    Article  Google Scholar 

  11. Szenknect S, Ardois C et al (2005) Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling. J Contam Hydrol 76(1):139–165

    Article  CAS  PubMed  Google Scholar 

  12. Palagyi S, Stamberg K, Vodickova H (2010) Transport and sorption of 85Sr and 125I in crushed crystalline rocks under dynamic flow conditions. J Radionanal Nucl Chem 283:629–636

    Article  CAS  Google Scholar 

  13. Stamberg K, Palagyi S, Videnska K, Havlova V (2014) Interaction of 3H+ (as HTO) and 36Cl (as Na36Cl) with crushed granite and corresponding fracture infill material investigated in column experiments. J Radioanal Nucl Chem 299:1625–1633

    Article  CAS  PubMed  Google Scholar 

  14. Palagyi S, Stamberg K (2011) Determination of 137Cs and 85Sr transport parameters in fucoids sand columns and groundwater system. Cent Eur J Chem 9:798–807

    CAS  Google Scholar 

  15. Lu CJ, Liu CL et al (2008) Determination of the effective diffusion coefficient for 125I in Beishan granite. Radiochim Acta 96:111–117

    Article  CAS  Google Scholar 

  16. Chen T, Li C, Liu XY et al (2013) Migration study of iodine in Beishan granite by a column method. J Radioanal Nucl Chem 298(1):219–225

    Article  CAS  Google Scholar 

  17. Wang J, Chen L, Su R et al (2018) The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests. J Rock Mech Geotech Eng 3:411–435

    Article  Google Scholar 

  18. Palagyi S, Stamberg K (2010) Modeling of transport of radionuclides in beds of crushed crystalline rocks under equilibrium non-linear sorption isotherm conditions. Radiochim Acta 98:359–365

    Article  CAS  Google Scholar 

  19. Rachinskiy BV (1964) Vvedenije v obscuju teoriju dinamiky sorbcii i chromatografii (Introduction into general theory of the dynamics of sorption and chromatography). Nauka, Moskva

    Google Scholar 

  20. Zheng C, Bennett GD (1995) Applied contaminant transport modeling: theory and practice. Van Nostrand Reinhold, New York, p 440

    Google Scholar 

  21. Wang C, Yang X, Li C (2015) The sorption interactions of humic acid onto Beishan granite. Colloids Surf A 484:37–46

    Article  CAS  Google Scholar 

  22. Zou Y, Chen T (2018) Sorption of iodine on Beishan granite: effect of speciation and humic acid. J Radioanal Nucl Chem 317(2):723–730

    Article  CAS  Google Scholar 

  23. Gelhar LW, Welty C, Rehfelot KR (1992) A critical review of data on field-scale dispersion. Water Resour Res 28(7):1955–1974

    Article  CAS  Google Scholar 

  24. Palagyi S, Stamberg K (2014) Transport parameters of I and IO3 determined in crushed granitic rock columns and groundwater system under dynamic flow conditions. J Radioanal Nucl Chem 302(1):647–653

    Article  CAS  Google Scholar 

  25. Videnska K, Palagyi S, Stamberg K, Vodickova H, Havlova V (2013) Effect of grain size on the sorption and desorption of SeO4 2− and SeO3 2− in columns of crushed granite and fracture infill from granitic water under dynamic conditions. J Radioanal Nucl Chem 298:547–554

    Article  CAS  Google Scholar 

  26. Palagyi S, Stamberg K (2011) Determination of 137Cs and 85Sr transport parameters in fucoids sand columns and groundwater system. Cent Eur J Chem 9:798–807

    CAS  Google Scholar 

Download references

Acknowledgements

Supported by National Natural Science Foundation of China (11305061), the Fundamental Research Funds for the Central Universities (2018ZD10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Chen, T. & Liu, P. Migration characteristics study of iodine in crushed Beishan granite column under dynamic flow condition. J Radioanal Nucl Chem 321, 693–699 (2019). https://doi.org/10.1007/s10967-019-06627-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06627-1

Keywords

Navigation