Skip to main content
Log in

Estimation of radiological indices in Indian Sundarbans: a mangrove habitat

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present study evaluates the radiological indices due to naturally occurring radionuclides (238U, 232Th and 40K) present in surface soil samples of Indian Sundarbans. Univariate and multivariate statistical analysis were carried out to understand the probability distribution of the radionuclides, correlate and classify the different radiological parameters. Averages of absorbed dose rate (D), annual effective dose were found higher than world averages, whereas that of radium equivalent activity (Raeq), annual gonadal dose equivalent and hazard indices (Hin and Hex) were found below the maximum permissible limit. The data indicates that Indian Sundarbans poses no significant radiological health hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Courtesy: http://mapmaker.nationalgeographic.org/ [43]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramasamy V, Sundarrajan M, Paramasivam K, Meenakshisundaram V, Suresh G (2013) Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India. Appl Radiat Isot 73:21–31

    Article  CAS  PubMed  Google Scholar 

  2. Valan I, Mathiyarasu R, Sridhar SGD, Narayanan V, Stephen A (2015) Investigation of background radiation level in Krusadai Island Mangrove, Gulf of Mannar, India. J Radioanal Nucl Chem 304:735–744

    Article  CAS  Google Scholar 

  3. Satheeshkumar G, Hameed PS, Meeramaideen M, Kannan V (2011) A post-tsunami study on the distribution and bioaccumulation of natural radionuclides in Pichavaram mangrove environment (south east coast of India) and dose to local human population. Radiat Prot Environ 34:96–103

    Google Scholar 

  4. Paiva JDS, Sousa EE, Farias EEG, Carmo AM, Souza EM, França EJ (2016) Natural radionuclides in mangrove soils from the State of Pernambuco, Brazil. J Radioanal Nucl Chem 307:883–889

    Article  CAS  Google Scholar 

  5. Ahmed MF, Roy S, Miah FK, Alam B (2000) Distribution of natural radionuclides in sediment samples in some areas of Sundarban mangrove forest. Radiat Prot Environ 23:157–163

    CAS  Google Scholar 

  6. Chaudhuri P, Naskar N, Lahiri S (2017) Measurement of background radioactivity in surface soil of Indian Sundarban. J Radioanal Nucl Chem 311:1947–1952

    Article  CAS  Google Scholar 

  7. Naskar N, Lahiri S, Chaudhuri P (2019) Quantitative estimation of total potassium and 40 K in surface soil samples of Indian Sundarbans. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06472-2

    Article  Google Scholar 

  8. Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2016) Measurement of naturally occurring radioactive material, 238U and 232Th: anomalies in photo-peak selection. J Radioanal Nucl Chem 310:1381–1396

    Article  CAS  Google Scholar 

  9. Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2017) Measurement of naturally occurring radioactive material, 238U and 232Th- part-2: optimization of counting time. J Radioanal Nucl Chem 312:161–171

    Article  CAS  Google Scholar 

  10. Naskar N, Lahiri S, Chaudhuri P (2018) Anomalies in quantitative measurement of 40K in natural samples. J Radioanal Nucl Chem 316:709–715

    Article  CAS  Google Scholar 

  11. Patnaik R, Lahiri S, Chahar V, Naskar N, Sharma PK, Avhad DK, Bassan MKT, Knolle F, Schnug E, Srivastava A (2016) Study of uranium mobilization from Himalayan Siwaliks to the Malwa region of Punjab state in India. J Radioanal Nucl Chem 308:913–918

    Article  CAS  Google Scholar 

  12. Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2017) Measurement of naturally occurring radioactive materials, 238U and 232Th- part 3: is efficiency calibration necessary for quantitative measurement of ultra-low level NORM? J Radioanal Nucl Chem 314:507–511

    Article  CAS  Google Scholar 

  13. United Nations scientific committee on the effects of atomic radiation report to the general assembly with scientific annexes, v. I. (2000). In: UNSCEAR: sources and effects of ionizing radiation

  14. United Nations scientific committee on the effects of atomic radiation report to the general assembly with scientific annexes, v. I. (2008). In: UNSCEAR: sources and effects of ionizing radiation

  15. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials. Industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  16. Ravisankar R, Sivakumar S, Chandrasekaran A, Prince Prakash Jebakumar J, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2014) Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East coastal sediments of Tamil Nadu, India with statistical approach. Radiat Phys Chem 103:89–98

    Article  CAS  Google Scholar 

  17. Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot 69:184–195

    Article  CAS  PubMed  Google Scholar 

  18. Jaison TJ, Patra AK, Jha MK, Hedge AG (2010) Assessment of natural radioactivity in silt samples from Moticher lake near Kakrapar Atomic Power Station, India. J Radioanal Nucl Chem 284:583–589

    Article  CAS  Google Scholar 

  19. Narayana Y, Rajashekara KM, Siddappa K (2007) Natural radioactivity in some major rivers of coastal Karnataka on the southwest coast of India. J Environ Radioact 95:98–106

    Article  CAS  PubMed  Google Scholar 

  20. Tripathi RM, Patra AC, Mohapatra S, Sahoo SK, Kumar AV, Puranik VD (2013) Natural radioactivity in surface marine sediments near the shore of Vizag, South East India and associated radiological risk. J Radioanal Nucl Chem 295:1829–1835

    Article  CAS  Google Scholar 

  21. Karunakara N, Somashekarappa HM, Siddappa K (2005) Natural radioactivity in South West Coast of India. Int Congr Ser 1276:346–347

    Article  Google Scholar 

  22. Punniyakotti J, Ponnusamy V (2017) Mineralogical role on natural radioactivity content in the intertidal sands of Tamilnadu coast (HBRAs region), India. J Radioanal Nucl Chem 314:949–959

    Article  CAS  Google Scholar 

  23. Ravisankar R, Chandramohan J, Chandrasekaran A, Prince Prakash Jebakumar J, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2015) Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamil Nadu, India with statistical approach. Mar Pollut Bull 97:419–430

    Article  CAS  PubMed  Google Scholar 

  24. Murugesan S, Mullainathan S, Ramasamy V, Meenakshisundaram V (2011) Radioactivity and radiation hazard assessment of Cauvery River, Tamilnadu, India. Iran J Radiat Res 8:211–222

    Article  Google Scholar 

  25. Tholkappian M, Chandrasekaran A, Harikrishnan N, Ganesh D, Elango G, Ravisankar R (2017) Measurement of natural radioactivity in and around Chennai Coast, East Coast of Tamil Nadu, India, using gamma ray spectrometry. Radiat Prot Environ 40:9–12

    Article  Google Scholar 

  26. Patra AK, Sudhakar J, Ravi PM, James JP, Hegde AG, Joshi ML (2006) Natural radioactivity distribution in geological matrices around Kaiga environment. J Radioanal Nucl Chem 270:307–312

    Article  CAS  Google Scholar 

  27. Klubi E, Abril JM, Nyarko E, Laissaoui A, Benmansour M (2017) Radioecological assessment and radiometric dating of sediment cores from dynamic sedimentary systems of Pra and Volta estuaries (Ghana) along the Equatorial Atlantic. J Environ Radioact 178–179:116–126

    Article  CAS  PubMed  Google Scholar 

  28. Kurnaz A, Küçükömeroğlu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289

    Article  CAS  PubMed  Google Scholar 

  29. El-Taher A, Madkour HA (2011) Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast. Appl Radiat Isot 69:550–558

    Article  CAS  PubMed  Google Scholar 

  30. Santawamaitre T, Malain D, Al-Sulaiti HA, Bradley DA, Matthews MC, Regan PH (2014) Determination of 238U, 232Th and 40K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J Environ Radioact 138:80–86

    Article  CAS  PubMed  Google Scholar 

  31. Kayakökü H, Doğru M (2017) Radioactivity analysis of soil samples taken from the western and northern shores of Lake Van, Turkey. Appl Radiat Isot 128:231–236

    Article  CAS  PubMed  Google Scholar 

  32. Al-Trabulsy HA, Khater AEM, Habbani FI (2011) Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat Phy Chem 80:343–348

    Article  CAS  Google Scholar 

  33. Agbalagba EO, Onoja RA (2011) Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. J Environ Radioact 102:667–671

    Article  CAS  PubMed  Google Scholar 

  34. Song G, Chen D, Tang Z, Zhang Z, Xie W (2012) Natural radioactivity levels in topsoil from the Pearl River Delta Zone, Guangdong, China. J Environ Radioact 103:48–53

    Article  CAS  PubMed  Google Scholar 

  35. Malik F (2014) Natural radioactivity in sand samples collected along the bank of river Indus in the area spanning over Gilgit to Lowarian Pakistan: assessment of its radiological hazards. J Radioanal Nucl Chem 299:373–379

    Article  CAS  Google Scholar 

  36. Alfonso JA, Pérez K, Palacios D, Handt H, LaBrecque JJ, Mora A, Vásquez Y (2014) Distribution and environmental impact of radionuclides in marine sediments along the Venezuelan coast. J Radioanal Nucl Chem 300:219–224

    Article  CAS  Google Scholar 

  37. Faghihian H, Rahi D, Mostajaboddavati M (2012) Study of natural radionuclides in Karun river. J Radioanal Nucl Chem 292:711–717

    Article  CAS  Google Scholar 

  38. Wang J, Du J, Bi Q (2017) Natural radioactivity assessment of surface sediments in the Yangtze Estuary. Mar Pollut Bull 114:602–608

    Article  CAS  PubMed  Google Scholar 

  39. Rashed-Nizam QM, Tafader MK, Zafar M, Rahman MM, Bhuian AKMSI, Khan RA, Kamal M, Chowdhury MI, Alam MN (2016) Radiological risk analysis of sediment from Kutubdia Island, Bangladesh due to natural and anthropogenic radionuclides. Int J Radiat Res 14:374–377

    Google Scholar 

  40. Carvalho FM, Lauria DC, Ribeiro FCA, Fonseca RT, Peres SS, Martins NSF (2016) Natural and man-made radionuclides in sediments of an inlet in Rio de Janeiro State, Brazil. Mar Pollut Bull 107:269–276

    Article  CAS  PubMed  Google Scholar 

  41. Hosoda M, Tokonami S, Omori Y, Sahoo SK, Akiba S, Sorimachi A, Ishikawa T, Nair RR, Jayalekshmi PA, Sebastian P, Iwaoka K, Akata N, Kudo H (2015) Estimation of external dose by car-borene survey in Kerala, India. PLoS ONE 10:4

    Article  CAS  Google Scholar 

  42. Stanley DJ, Hait AK (2000) Holocene depositional patterns, neotectonics and Sundarban mangroves in the western Ganges-Brahmaputra delta. J Coast Res 16:26–39

    Google Scholar 

  43. http://mapmaker.nationalgeographic.org/. Last accessed 10 Aug 2018

Download references

Acknowledgements

NN is thankful to University Grants Commission (UGC) for providing the necessary fellowship. This work is part of DAE-SINP 12 five-year plan project TULIP (Trace, Ultratrace Analysis and Isotope Production).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, N., Lahiri, S. & Chaudhuri, P. Estimation of radiological indices in Indian Sundarbans: a mangrove habitat. J Radioanal Nucl Chem 322, 213–223 (2019). https://doi.org/10.1007/s10967-019-06597-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06597-4

Keywords

Navigation