Skip to main content
Log in

Effective adsorption of Co2+ and Sr2+ ions by 10-tungsten-2-molybdophosphoric acid supported amine modified magnetic SBA-15

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The presence of heavy metals in water sources have created serious environmental concerns. In this study, 10-tungsten-2-molybdophosphoric acid supported amine-functionalized magnetic SBA-15 with core–shell morphology was prepared and its applicability as effective inorganic adsorbent for Co2+ and Sr2+ removal was investigated. The adsorbent was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, inductively coupled plasma analysis and N2 physical adsorption–desorption technique. The effective parameters including dosage of adsorbent, contact time, initial concentration of metal ion, pH of solution, temperature and elution agent were investigated. Batch adsorption studies depicted higher adsorption affinity for Co2+ than Sr2+ ions. The synthesized adsorbent has an adsorption capacity of 87.72 mg g−1 and 80.01 for Co2+ and Sr2+ respectively. This research highlights the source of difference between their adsorption capacity. EDTA had more desorption performance as elution agent than HCl that attributed to larger chelating stability constant of EDTA. Moreover, the results showed the good recyclability and excellent stability of adsorbent after 4 successive cycles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme  1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin L, Xu X, Papelis C, Xu P (2017) Innovative use of drinking water treatment solids for heavy metals removal from desalination concentrate: synergistic effect of salts and natural organic matter. Chem Eng Res Des 120:231–239

    Article  CAS  Google Scholar 

  2. Sun YB, Wang XX, Ding CC, Cheng WC, Chen CL, Hayat T, Alsaedi A, Hu J, Wang x (2016) Direct synthesis of bacteria-derived carbonaceous nanofibers as a highly efficient material for radionuclides elimination. ACS Sustain Chem Eng 4:4608–4616

    Article  CAS  Google Scholar 

  3. Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451

    Article  CAS  Google Scholar 

  4. El-Wakil MM (1988) Powerplant technology. Tata McGraw-Hill Education, New York

    Google Scholar 

  5. He M, Zhu Y, Yang Y, Han B, Zhang Y (2011) Adsorption of cobalt (II) ions from aqueous solutions by palygorskite. Appl Clay Sci 54:292–296

    Article  CAS  Google Scholar 

  6. Toxic Substances and Disease Registry (ATSDR) (2004) Toxicological profile for cobalt. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  7. Jiao J, Zhao J, Pei Y (2017) Adsorption of Co(II) from aqueous solutions by water treatment residuals. J Environ Sci 52:232–239

    Article  Google Scholar 

  8. Aryal M, Liakopoulou-Kyriakides M (2015) Bioremoval of heavy metals by bacterial biomas. Environ Monit Assess 187:4173

    Article  CAS  PubMed  Google Scholar 

  9. Chen G, Shah KJ, Shi L, Chiang PC (2017) Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms. Appl Surf Sci 409:296–305

    Article  CAS  Google Scholar 

  10. Li F, Chen Y, Huang H, Cao W, Li T (2015) Removal of rhodamine B and Cr(VI) from aqueous solutions by a polyoxometalate adsorbent. Chem Eng Res Des 100:192–202

    Article  CAS  Google Scholar 

  11. Park Y, Shin WS, Choi SJ (2013) Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem Eng J 220:204–213

    Article  CAS  Google Scholar 

  12. Long DL, Tsunashima R, Cronin L (2010) Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed 49:1736–1758

    Article  CAS  Google Scholar 

  13. Chamack M, Mahjoub AR, Aghayan H (2015) Catalytic performance of vanadium-substituted molybdophosphoric acid supported on zirconium modified mesoporous silica in oxidative desulfurization. Chem Eng Res Des 94:565–572

    Article  CAS  Google Scholar 

  14. Granadeiro CM, Ribeiro SO, Kaczmarek AM, Cunha-Silva L, Almeida PL, Gago S, Deun RV, Castro B, Balula SS (2016) A novel red emitting material based onpolyoxometalate@ periodic mesoporous organosilica. Microporous Mesoporous Mater 234:248–256

    Article  CAS  Google Scholar 

  15. Pourbeyram S, Moosavifar M, Hasanzadeh V (2014) Electrochemical characterization of the encapsulated polyoxometalates (POMs) into the zeolite. J Electroanal Chem 714–715:19–24

    Article  CAS  Google Scholar 

  16. Ucar A, Findik M, Gubbuk IH, Kocak N, Bingol H (2017) Catalytic degradation of organic dye using reduced graphene oxide–polyoxometalate nanocomposite. Mater Chem Phys 196:21–28

    Article  CAS  Google Scholar 

  17. Bai Z, Zhou C, Xu H, Wang G, Pang H, Ma H (2017) Polyoxometalates-doped Au nanoparticles and reduced graphene oxide: a new material for the detection of uric acid in urine. Sens Actuators, B 243:361–371

    Article  CAS  Google Scholar 

  18. Lei D, Zheng Q, Wang Y, Wang H (2015) Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution. J Environ Sci 28:118–127

    Article  CAS  Google Scholar 

  19. Masteri-Farahani M, Modarres M (2016) Wells-Dawson heteropoly acid immobilized inside the nanocages of SBA-16 with ship-in-a-bottle method: a new recoverable catalyst for the epoxidation of olefins. J Mol Catal A: Chem 417:81–88

    Article  CAS  Google Scholar 

  20. Park Y, Shin WS, Choi SJ (2013) Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): an efficient ion exchanger for cesium ion. Chem Eng J 220:204–213

    Article  CAS  Google Scholar 

  21. Srivastava S, Agrawal SB, Mondal MK (2017) Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) adsorption from aqueous solution. J Environ Sci 55:283–293

    Article  Google Scholar 

  22. Zheng X, Dou J, Yuan J, Qin W, Hong X, Ding A (2017) Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite. J Environ Sci 56:12–24

    Article  Google Scholar 

  23. Wang Q, Li Y, Liu B, Dong Q, Xu G, Zhangab L, Zhang J (2015) Novel recyclable dual-heterostructured Fe3O4@CeO2/M (M = Pt, Pd and Pt–Pd) catalysts: synergetic and redox effects for superior catalytic performance. J Mater Chem A 3:139–147

    Article  CAS  Google Scholar 

  24. Li W, Zhang B, Li X, Zhang H, Zhang Q (2013) Preparation and characterization of novel immobilized Fe3O4@SiO2@mSiO2–Pd(0) catalyst with large pore-size mesoporous for Suzuki couplingreaction. Appl Catal A 459:65–72

    Article  CAS  Google Scholar 

  25. Huixiong W, Mei Z, Yixin Q, Haixia L, Hengbo Y (2009) Preparation and characterization of tungsten-substituted molybdophosphoric acids and catalytic cyclodehydration of 1,4-butanediol to tetrahydrofuran. Chin J Chem Eng 17:200–206

    Article  Google Scholar 

  26. Berger D, Georgescu D, Bajenaru L, Zanfir A, Stănică N, Matei C (2017) Properties of mesostructured silica coated CoFe2O4 versus Fe3O4-silica composites. J Alloys Compd 708:278–284

    Article  CAS  Google Scholar 

  27. Fumin Z, Chaoshu Y, Jun W, Yan K, Haiyang Z, Chunyan W (2006) Synthesis of fructone over dealmuinated USY supported heteropoly acid and its salt catalysts. J Mol Catal A: Chem 247:130–137

    Article  CAS  Google Scholar 

  28. Yavari R, Ahmadi SJ, Huang YD, Khanchi AR, Bagheri G, He JM (2009) Synthesis, characterization and analytical application of a new inorganic cation exchanger—Titanium(IV) molybdophosphate. Talanta 77:1179–1184

    Article  CAS  PubMed  Google Scholar 

  29. Mardiroosi A, Mahjoub AR, Fakhri H (2017) Efficient visible light photocatalytic activity based on magnetic graphene oxide decorated ZnO/NiO. J Mater Sci: Mater Electron 28:11722–11732

    CAS  Google Scholar 

  30. Ghorbani M, Nowee SM, Ramezanian N, Raji F (2016) A new nanostructured material amino functionalized mesoporous silica synthesized via co-condensation method for Pb(II) and Ni(II) ion sorption from aqueous solution. Hydrometallurgy 161:117–126

    Article  CAS  Google Scholar 

  31. Shaker MA (2015) Adsorption of Co(II), Ni(II) and Cu(II) ions onto chitosan-modified poly(methacrylate) nanoparticles: dynamics, equilibrium and thermodynamics studies. J Taiwan Inst Chem Eng 57:111–122

    Article  CAS  Google Scholar 

  32. Zhao L, Chi Y, Yuan Q, Li N, Yan W, Li X (2013) Phosphotungstic acid anchored to amino–functionalized core–shell magnetic mesoporous silica microspheres: a magnetically recoverable nanocomposite with enhanced photocatalytic activity. J Colloid Interface Sci 390:70–77

    Article  CAS  PubMed  Google Scholar 

  33. Zhang YL, Zhang J, Dai CM, Zhou XF, Liu SG (2013) Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydr Polym 97:809–816

    Article  CAS  PubMed  Google Scholar 

  34. Fakhri H, Mahjoub AR, Aghayan H (2017) Effective removal of methylene blue and cerium by a novel pair set of heteropoly acids based functionalized graphene oxide: adsorption and photocatalytic study. Chem Eng Res Des 120:303–315

    Article  CAS  Google Scholar 

  35. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Competitive adsorption of strontium and cobalt onto tin antimonite. Chem Eng J 285:679–689

    Article  CAS  Google Scholar 

  36. Kyzas GZ, Deliyanni EA, Matis KA (2016) Activated carbons produced by pyrolysis of waste potato peels: cobaltions removal by adsorption. Colloids Surf A 490:74–83

    Article  CAS  Google Scholar 

  37. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  38. Ho Y (2006) Review of second-order models for adsorption systems. J Hazard Mater B 136:681–689

    Article  CAS  Google Scholar 

  39. Web elements periodic table of the elements. The University of Sheffield and Web Elements Ltd, UK. http://www.wiredchemist.com/chemistry/data/metallic-radii (1993–2017)

  40. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. JACS 40:1361–1403

    Article  CAS  Google Scholar 

  41. Gunten UV (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37:1443–1467

    Article  CAS  Google Scholar 

  42. Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev 60:235–266

    Article  CAS  Google Scholar 

  43. He M, Zhu Y, Yang Y, Han B, Zhang Y (2011) Adsorption of cobalt(II) ions from aqueous solutions by palygorskite. Appl Clay Sci 54:292–296

    Article  CAS  Google Scholar 

  44. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Competitive adsorption of strontium and cobalt onto tin antimonite. Chem Eng J 285:679–689

    Article  CAS  Google Scholar 

  45. Dotto GL, Cunha JM, Calgaro CO, Tanabe EH, Bertuol DA (2015) Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J Hazard Mater 295:29–36

    Article  CAS  PubMed  Google Scholar 

  46. Hadi P, Barford J, McKay G (2013) Synergistic effect in the simultaneous removal of binary cobalt–nickel heavy metals from effluents by a novel e-waste-derived material. Chem Eng J 228:140–146

    Article  CAS  Google Scholar 

  47. Tayyebi A, Outokesh M, Moradi S, Doram A (2015) Synthesis and characterization of ultrasound assisted “grapheneoxide–magnetite” hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions. Appl Surf Sci 353:350–362

    Article  CAS  Google Scholar 

  48. Cheng R, Kang M, Zhuang S, Shi L, Zheng X, Wang J (2019) Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J Hazard Mater 364:645–653

    Article  CAS  PubMed  Google Scholar 

  49. Li M, Liu H, Zhu H, Gao H, Zhang S, Chen T (2017) Kinetics and mechanism of Sr(II) adsorption by Al-Fe2O3: evidence from XPS analysis. J Mol Liq 233:364–369

    Article  CAS  Google Scholar 

  50. Abdel-Karim AAM, Zaki AA, Elwan W, El-Naggar MR, Gouda MM (2016) Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl Clay Sci 132–133:391–401

    Article  CAS  Google Scholar 

  51. Zhang L, Wei J, Zhao X, Li F, Jiang F (2015) Adsorption characteristics of strontium on synthesized antimony silicate. Chem Eng J 277:378–387

    Article  CAS  Google Scholar 

  52. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M (2015) Strontium (II) adsorption on Sb(III)/Sb2O5. Chem Eng J 267:245–252

    Article  CAS  Google Scholar 

  53. Inan S, Nostar E (2013) Structure and ion exchange behavior of zirconium antimonates for strontium. Sep Sci Technol 48:1364–1369

    Article  CAS  Google Scholar 

  54. İnan S, Altaş Y (2010) Adsorption of strontium from acidic waste solution by Mn–Zr mixed hydrous oxide prepared by co-precipitation. Sep Sci Technol 45:269–276

    Article  CAS  Google Scholar 

  55. Guan W, Pan J, Ou H, Wang X, Zou X, Hu W, Li C, Wu X (2011) Removal of strontium (II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: equilibrium, kinetics and thermodynamics. Chem Eng J 167:215–222

    Article  CAS  Google Scholar 

  56. Javed MA, Bhatti HN, Hanif NA, Nadeem R (2007) Kinetic and equilibrium modeling of Pb(II) and Co(II) Sorption onto rose waste biomass. Sep Sci Technol 42:3641–3656

    Article  CAS  Google Scholar 

  57. Olgun A, Atar N (2011) Removal of copper and cobalt from aqueous solution onto waste containing boron impurity. Chem Eng J 167:140–147

    Article  CAS  Google Scholar 

  58. Manohar DM, Noeline BF, Anirudhan TS (2006) Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. Appl Clay Sci 31:194–206

    Article  CAS  Google Scholar 

  59. Ivanets AI, Katsoshvili LL, Krivoshapkin PV, Prozorovich VG, Kuznetsova TF, Krivoshapkina EF, Radkevich AV, Zarubo AM (2017) Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type. Radiochemistry 59:264–271

    Article  CAS  Google Scholar 

  60. Ivanets AI, Shashkova IL, Kitikova NV, Drozdova NV (2014) Extraction of Co(II) Ions from aqueous solutions with thermally activated dolomite. Russ J Appl Chem 87:270–275

    Article  CAS  Google Scholar 

  61. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Krivoshapkin PV, Krivoshapkina EF, Sillanpa M (2018) Sorption behavior of 85Sr onto manganese oxides with tunnel structure. J Radioanal Nucl Chem 316:673–683

    Article  CAS  Google Scholar 

  62. Ivanets AI, Srivastava V, Roshchina MY, Sillanpää M, Prozorovich VG, Pankov VV (2018) Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu 2+ from aqueous solution. Ceram Int 44:9097–9104

    Article  CAS  Google Scholar 

  63. Cheng C, Wang J, Yang X, Li A, Philippe C (2014) Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. J Hazard Mater 264:332–341

    Article  CAS  PubMed  Google Scholar 

  64. Rajic N, Stojakovic D, Jovanovic M, Logar NZ, Mazaj M, Kaucic V (2010) Removal of nickel (II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. Appl Surf Sci 257:1524–1532

    Article  CAS  Google Scholar 

  65. Liu X, Luo J, Zhu Y, Yang Y, Yang S (2015) Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate. J Alloys Compd 648:986–993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this study by Tarbiat Modares university is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Mahjoub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, H., Mahjoub, A.R. & Aghayan, H. Effective adsorption of Co2+ and Sr2+ ions by 10-tungsten-2-molybdophosphoric acid supported amine modified magnetic SBA-15. J Radioanal Nucl Chem 321, 449–461 (2019). https://doi.org/10.1007/s10967-019-06595-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06595-6

Keywords

Navigation