Skip to main content
Log in

Study of the kinetics and mechanism of Sr2+ sorption by clinoptilolite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The parameters of kinetics of Sr2+ sorption by natural clinoptilolite were investigated. The overall rate constants were determined by application of pseudo-first and pseudo-second order kinetic models. The actual sorption mechanism was studied by application of both intraparticle and surface film diffusion models. The application of Rietveld structure refinement shows the preferable sites of strontium ion exchange in the clinoptilolite structure and their diffusion through cationic sites with time, as well as indicates the positions occupied by Sr2+ ions at the start of the exchange process and the positions where Sr2+ accumulates in subsequent ion exchange stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alby D, Charnay C, Heran M, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—a review. J Hazard Mater 344:511–530

    Article  CAS  PubMed  Google Scholar 

  2. Delkash M, Bakhshayesh BE, Kazemian H (2015) Using zeolitic adsorbents to cleanup special wastewater streams: a review. Microporous Mesoporous Mater 214:224–241

    Article  CAS  Google Scholar 

  3. Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144:15–18

    Article  CAS  Google Scholar 

  4. Lihareva N, Petrov O, Tzvetanova Y, Kadiyski M, Nikashina V (2015) Evaluation of the possible use of a Bulgarian clinoptilolite for removing strontium from water media. Clay Miner 50:55–64

    Article  CAS  Google Scholar 

  5. Lihareva N, Petrov O, Tzvetanova Y (2017) Modelling of Cs+ uptake by natural clinoptilolite from water media. Bulg Chem Commun 49:577–582

    Google Scholar 

  6. Ho YS, Ng JCY, McKay G (2000) Kinetic of pollutant sorption by biosorbents: review. Sep Purif Methods 29:189–232

    Article  CAS  Google Scholar 

  7. Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  8. Weber WJ Jr, Morris JC (1963) Kinetic of adsorption on carbon from solution. J Sanitary Eng Div 89:31–38

    Google Scholar 

  9. Boyd GE, Adamson AW, Mayers LS (1947) The exchange adsorption of ions from aqueous solutions by zeolites. II. Kinetics. J Am Chem Soc 69:28–36

    Google Scholar 

  10. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  11. Topas V 4.2: general profile and structure analysis software for powder diffraction. Bruker AXS, Karlsruhe

  12. Ho YS, McKay G (1999) The sorption of lead(II) on peat. Water Res 33:578–584

    Article  CAS  Google Scholar 

  13. Wu F-Ch, Tseng R-L, Huang R-S (2001) Kinetic modelling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35:613–618

    Article  CAS  PubMed  Google Scholar 

  14. Ofomaja AE (2010) Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresour Technol 101:5868–5876

    Article  CAS  PubMed  Google Scholar 

  15. Gupta SS, Bhattacharyya K (2006) Adsorption of Ni(II) on clays. J Colloid Interface Sci 295:21–32

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Wang A (2007) Kinetic and isotherm studies of lead adsorption onto palygorskite clay. J Colloid Interface Sci 307:309–316

    Article  CAS  PubMed  Google Scholar 

  17. Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM (2008) Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ionselective electrode. Bioresour Technol 99:5786–5792

    Article  CAS  PubMed  Google Scholar 

  18. Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol 98:2897–2904

    Article  CAS  PubMed  Google Scholar 

  19. Kragović M, Selulić Ž, Stojanović M, Petrović M, Dondur V, Damjanović L, Jović A (2014) Kinetic of Pb(II) ions removal from aqueous solution using the Fe(III)-modified zeolite. In: Zeolite 2014, book of abstracts of the 9th international conference of the occurrence, properties and utilization of natural zeolites, Belgrade, 8–13 June 2014, pp 109–110

  20. Ofomaja AE (2008) Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chem Eng J 143:85–95

    Article  CAS  Google Scholar 

  21. Waranusantigul P, Pokethitiyook P, Kruatrachue M, Upatham ES (2003) Kinetic of basic dye (methylene blue) biosorption by giant duckweed (Soirodela polyrrhiza). Environ Pollut 125:385–392

    Article  CAS  PubMed  Google Scholar 

  22. Kumar KV, Ramamurthi V, Sivanesan S (2005) Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Colloid Interface Sci 284:14–21

    Article  CAS  PubMed  Google Scholar 

  23. Allen SJ, McKay G, Khader KY (1989) Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut 56:39–50

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Li H, Hu L (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. J Colloid Interface Sci 295:71–78

    Article  CAS  PubMed  Google Scholar 

  25. Reichenberg D (1953) Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc 75:589–597

    Article  CAS  Google Scholar 

  26. El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445

    Article  CAS  PubMed  Google Scholar 

  27. Koyama K, Takeuchi Y (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Z Kristallogr 145:216–239

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lihareva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lihareva, N., Dimowa, L., Petrov, O. et al. Study of the kinetics and mechanism of Sr2+ sorption by clinoptilolite. J Radioanal Nucl Chem 321, 31–38 (2019). https://doi.org/10.1007/s10967-019-06574-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06574-x

Keywords

Navigation