Skip to main content
Log in

Kinetics and Rietveld XRD structural study of Cs+ sorption on natural and synthetic mordenites in the first 12 h

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Kinetics of Cs+ uptake by natural and synthetic mordenites was studied. The experimental data is best fitted to the pseudo-second-order rate model and the parameters k2 and qe are calculated. The application of intra-particle diffusion and liquid film diffusion models show multilinear graphical dependence, indicating that both mechanisms influence the run of uptake. Rietveld XRD structural analyses were used for identification of the positions preferably occupied by Cs+ cations during the ion-exchange as a function of contact time. The obtained results show that the predominance of Na+ ions in the initial samples makes the exchanged sites more accessible by Cs+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144:15–18

    Article  CAS  Google Scholar 

  2. Yuna Z (2016) Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ Eng Sci 33:443–454

    Article  Google Scholar 

  3. Rajec P, Macášek F, Feder M, Misaelides P, Šamajová E (1998) Sorption of caesium and strontium on clinoptilolite- and mordenite-containing sedimentary rocks. J Radioanal Nucl Chem 229:49–55

    Article  CAS  Google Scholar 

  4. Cortés-Martínez R, Olguín MT, Solache-Ríos M (2010) Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems. Desalination 258:164–170

    Article  Google Scholar 

  5. Borai EH, Harjula R, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422

    Article  CAS  Google Scholar 

  6. Munthali MW, Johan E, Aono H, Matsue N (2015) Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. J Asian Ceram Soc 3:245–250

    Article  Google Scholar 

  7. de Gennaro B, Colella A, Aprea P, Colella C (2003) Evaluation of an intermediate-silica sedimentary chabazite as exchanger for potentially radioactive cations. Microporous Mesoporous Mater 61:159–165

    Article  Google Scholar 

  8. Baek W, Ha S, Hong S, Kim S, Kim Y (2018) Cation exchange of cesium and cation selectivity of natural zeolites: chabazite, stilbite, and heulandite. Microporous Mesoporous Mater 264:159–166

    Article  CAS  Google Scholar 

  9. Johan E, Yamada T, Munthali MW, Kabwadza-Corner P, Aono H, Matsue N (2015) Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environ Sci 28:52–56

    Article  CAS  Google Scholar 

  10. Meier WM, Olson DH, Baerlocher C (1996) Atlas of zeolite structure types. Zeolites 17:1–230

    CAS  Google Scholar 

  11. Meier WM (1961) The crystal structure of mordenite (ptilolite). Z Kristallogr 115:439–450

    Article  CAS  Google Scholar 

  12. Alberti A, Davoli P, Vezzalini G (1986) The crystal structure refinement of a natural mordenite. Z Kristallogr – Cryst Mater 175:249–256

    Article  CAS  Google Scholar 

  13. Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. In: Bish DL, Ming DW (eds) Reviews in mineralogy and geochemistry, 45, natural zeolites: occurrence, properties, use. Mineralogical Society of America, Washington DC, pp 1–67

    Google Scholar 

  14. Simoncic P, Armbruster T (2004) Peculiarity and defect structure of the natural and synthetic zeolite mordenite: a single-crystal X-ray study. Am Mineral 89:421–431

    Article  CAS  Google Scholar 

  15. Meier WM (1978) Constituent sheets in the zeolite frameworks of the mordenite group. In: Sand LB, Mumpton FA (eds) Natural zeolites, occurrence, properties, use. Pergamon Press, Oxford, pp 99–103

    Google Scholar 

  16. Ohnuki T, Kozai N (2013) Adsorption behavior of radioactive cesium by non-mica minerals. J Nucl Sci Technol 50:369–375

    Article  CAS  Google Scholar 

  17. Chmielewska E, Lesný J (2012) Selective ion exchange onto Slovakian natural zeolites in aqueous solutions. J Radioanal Nucl Chem 293:535–543

    Article  CAS  Google Scholar 

  18. Rahman RA, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  19. El-Kamash AM (2008) Evaluation of zeolite a for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445

    Article  CAS  Google Scholar 

  20. Aleksiev B, Djurova E (1976) Mordenite zeolites from the North-Eastern Rhodopes. Compt Rend Acad Bulg Sci 29:865–867

    CAS  Google Scholar 

  21. Lihareva N, Tzvetanova Y, Petrov O, Dimova L (2013) Sorption of silver cations by natural and Na-exchanged mordenite. Sep Sci Technol 48:617–625

    Article  CAS  Google Scholar 

  22. Lagergren S (1898) Zur theory der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenkapsakademiens Handingar 24:1–39

    Google Scholar 

  23. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  24. Gupta GS, Prasad G, Panday KK, Singh VN (1988) Removal of chrome dye from aqueous solutions by fly ash. Water Air Soil Poll 37:13–24

    Article  CAS  Google Scholar 

  25. Weber WJ Jr, Morris JC (1963) Kinetic of adsorption on carbon from solution. J Sanit Eng Div 89:31–59

    Article  Google Scholar 

  26. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2848

    Article  CAS  Google Scholar 

  27. Reichenberg D (1953) Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc 75:589–597

    Article  CAS  Google Scholar 

  28. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  29. Topas (2009) V 4.2: general profile and structure analysis software for powder diffraction. Bruker AXS, Karlsruhe, Germany

  30. Schlenker JL, Pluth JJ, Smith JV (1978) Positions of cations and molecules in zeolites with the mordenite-type framework: V dehydrated Rb-mordenite. Mater Res Bull 13:77–82

    Article  CAS  Google Scholar 

  31. Passaglia E, Artioli G, Gualtieri A, Carnevali R (1995) Diagenetic mordenite from Ponza, Italy. Eur J Mineral 7:429–438

    Article  CAS  Google Scholar 

  32. Kragović M, Sekulić Ž, Stojanović M, Petrović M, Dondur V, Damjanović L, Jović A (2014) Kinetics of Pb(II) ions removal from aqueous solution using the natural and Fe(III)-modified zeolite. In: Daković A, Trgo M, Langella A (eds) Proceedings of the 9-th international conference of the occurrence, properties and utilization of natural zeolites. Zeolite 2014, Belgrade, pp 109–110

  33. Wang S, Li H, Xu L (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. J Colloid Interface Sci 295:71–78

    Article  CAS  Google Scholar 

  34. Albadarin AB, Mangwandi C, Ala’a H, Walker GM, Allen SJ, Ahmad MN (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J 179:193–202

    Article  CAS  Google Scholar 

  35. Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187:79–88

    Article  CAS  Google Scholar 

  36. Chen H, Wang A (2007) Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. J Colloid Interface Sci 307:309–316

    Article  CAS  Google Scholar 

  37. Quattrini F, Galceran J, David CA, Puy J, Alberti G, Rey-Castro C (2017) Dynamics of trace metal sorption by an ion-exchange chelating resin described by a mixed intraparticle/film diffusion transport model. The Cd/Chelex case. Chem Eng J 317:810–820

    Article  CAS  Google Scholar 

  38. Walker GM, Weatherley LR (1999) Kinetics of acid dye adsorption on GAC. Water Res 33:1895–1899

    Article  CAS  Google Scholar 

  39. Jovanovic M, Grbavcic Z, Rajic N, Obradovic B (2014) Removal of Cu (II) from aqueous solutions by using fluidized zeolite A beads: Hydrodynamic and sorption studies. Chem Eng Sci 117:85–92

    Article  CAS  Google Scholar 

  40. Song SG (1999) Crystal defects of mordenite structures. J Mater Res 14:2616–2620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Petrov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimowa, L., Lihareva, N., Tzvetanova, Y. et al. Kinetics and Rietveld XRD structural study of Cs+ sorption on natural and synthetic mordenites in the first 12 h. J Radioanal Nucl Chem 331, 5741–5752 (2022). https://doi.org/10.1007/s10967-022-08648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08648-9

Keywords

Navigation