Skip to main content
Log in

Use of the inorganic hexacyanoferrate sorbents for analysis of radiocesium in aqueous samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Application of two inorganic hexacyanoferrate sorbents (T-35 and NPF-HTD) for radiochemical analysis of 137Cs in various water samples was studied. The results of batch experiment for cesium sorption revealed that both sorbents are suitable for preconcentration of cesium at the pH range of 0.5–11. Column experiments revealed that the NPF-HTD sorbent provided significantly better cesium sorption than the T-35 sorbent due to better sorption kinetics. The sorbents were tested using 1 L of raw and acidified fresh water and seawater as well as 7.2 L water sample from Techa River (activity of 1.36 ± 0.21 Bq L−1 was found). 1.5 g of the NPF-HTD allowed for cesium recovery of 86–98.7% depending on type of water sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cook MC, Stukel MJ, Zhang W, Mercier J-F, Cooke MW (2016) The determination of Fukushima-derived cesium-134 and cesium-137 in Japanese green tea samples and their distribution subsequent to simulated beverage preparation. J Environ Radioact 153:23–30

    Article  CAS  PubMed  Google Scholar 

  2. Aoyama M (2018) Long-range transport of radiocaesium derived from global fallout and the Fukushima accident in the Pacific Ocean since 1953 through 2017—Part I: source term and surface transport. J Radioanal Nucl Chem 318:1519–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breier CF, Pike SM, Sebesta F, Tradd K, Breier JA, Buesseler KO (2016) New applications of KNiFC-PAN resin for broad scale monitoring of radiocesium following the Fukushima Dai-ichi nuclear disaster. J Radioanal Nucl Chem 307:2193–2200

    Article  CAS  Google Scholar 

  4. Gulin SB, Egorov VN, Duka MS, Sidorov IG, Proskurnin VYu, Mirzoyeva NYu, Bey ON, Gulina LV (2015) Deep-water profiling of 137Cs and 90Sr in the Black Sea: a further insight into dynamics of the post-Chernobyl radioactive contamination. J Radioanal Nucl Chem 304:779–783

    Article  CAS  Google Scholar 

  5. Daraoui A, Tosch L, Gorny M, Michel R, Goroncy I, Herrmann J, Nies H, Synal H-A, Alfimov V, Walther C (2016) Iodine-129, Iodine-127 and Cesium-137 in seawater from the North Sea and the Baltic Sea. J Environ Radioact 162–163:289–299

    Article  CAS  PubMed  Google Scholar 

  6. Mahmood ZUW, Yii MO, Khalid MA, Yusof MAW, Mohamed N (2018) Marine radioactivity of Cs-134 and Cs-137 in the Malaysian Economic Exclusive Zone after the Fukushima accident. J Radioanal Nucl Chem 318:2165–2172

    Article  CAS  Google Scholar 

  7. Hirose K, Aoyama M, Sugimura Y (1990) Plutonium and cesium isotopes in river waters in Japan. J Radioanal Nucl Chem 141(1):191–202

    Article  CAS  Google Scholar 

  8. Povinec PP, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity impact on the environment. Elsevier, Amsterdam

    Book  Google Scholar 

  9. Pike SM, Buesseler KO, Breier CF, Dulaiova H, Stastna K, Sebesta F (2013) Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectroscopy and inductively coupled mass spectrometry. J Radioanal Nucl Chem 296(1):369–374

    Article  CAS  Google Scholar 

  10. Cao L, Zheng J, Tsukada H, Pan S, Wang Z, Tagami K, Uchida S (2016) Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS. Talanta 159:55–63

    Article  CAS  PubMed  Google Scholar 

  11. Aromaa H, Helariutta K, Ikonen J, Yli-Kaila M, Koskinen L, Siitari-Kauppi M (2018) Analysis of 3H, 36Cl, 133Ba, 134Cs and 22Na from synthetic granitic groundwater: an in situ through diffusion experiment at ONKALO. J Radioanal Nucl Chem 318:1161–1169

    Article  CAS  Google Scholar 

  12. Voronina AV, Betenekov ND, Semenishchev VS, Nedobukh TA (2015) Analysis of radionuclides in environmental samples. In: Walther C, Gupta DK (eds) Radionuclides in the environment. Influence of chemical speciation and plant uptake on radionuclide migration. Springer, Berlin, pp 231–253

    Google Scholar 

  13. Kumar SS, Sivaiah MV, Venkatesan KA, Krishna RM, Murthy GS, Sasidhar P (2003) Removal of cesium and strontium from acid solution using a composite of zirconium molybdate and zirconium tungstate. J Radioanal Nucl Chem 258(2):321–327

    Article  CAS  Google Scholar 

  14. El-Naggar IM, Zakaria ES, Ali IM, Khalil M, El-Shahat MF (2012) Chemical studies on polyaniline titanotungstate and its uses to reduction cesium from solutions and polluted milk. J Environ Radioact 112:108–117

    Article  CAS  PubMed  Google Scholar 

  15. Shady SA (2009) Selectivity of cesium from fission radionuclides using resorcinol-formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers. J Hazard Mater 167:947–952

    Article  CAS  PubMed  Google Scholar 

  16. Khanchi AR, Yavari R, Pourazarsa SK (2007) Preparation and evaluation of composite ion-exchanger for the removal of cesium and strontium radioisotopes. J Radioanal Nucl Chem 273(1):141–145

    Article  CAS  Google Scholar 

  17. Kamenik J, Dulaiova H, Sebesta F, Stastna K (2013) Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples. J Radioanal Nucl Chem 296(2):841–846

    Article  CAS  Google Scholar 

  18. Voronina AV, Blinova MO, Kulyaeva IO, Sanin PY, Semenishchev VS, Afonin YD (2015) Sorption of cesium radionuclides from aqueous solutions onto natural and modified aluminosilicates. Radiochemistry 57(5):446–452

    Article  CAS  Google Scholar 

  19. Gupta DK, Voronina AV, Semenishchev VS, Chatterjee S (2018) Green adsorbents for radioactive pollutants removal from natural water. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal innovative materials. Springer, Berlin, pp 377–396. ISBN 978-3-319-92161-7

    Chapter  Google Scholar 

  20. Remez VP, Semenishchev VS, Voronina AV, Ioshin AA (2017) The Sorben-Tec system for rapid dosimetric evaluation of 137Cs in drinking water. J Radioanal Nucl Chem 311(1):135–140

    Article  CAS  Google Scholar 

  21. Sharygin LM, Muromsky AY, Kalyagina ML (2006) Structure and properties of a granulated inorganic ion exchanger selective for cesium. Sorpt Chromatogr Process 6(6):965–971 (in Russian)

    Google Scholar 

  22. Voronina AV, Semenishchev VS, Nogovitsyna EV, Betenekov ND (2012) A study of ferrocyanide sorbents on hydrated titanium dioxide support using physicochemical methods. Radiochemistry 54(1):69–74

    Article  CAS  Google Scholar 

  23. Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res Part I Oceanogr Res Pap 55(1):50–72

    Article  Google Scholar 

  24. Semenishchev VS, Ryabukhina VG, Voronina AV, Mashkovtsev MA, Nikiforov AF (2016) The study of selectivity of caesium sorption by a natural and surface-modified glauconite in presence of potassium and ammonium ions. J Radioanal Nucl Chem 309(2):583–588

    CAS  Google Scholar 

  25. Stepanets OV, Ligaev AN, Borisov AP, Travkina AV, Shkinev VM, Danilova TV, Miroshnikov AYu, Migunov VI (2009) Geoecological investigations of the Ob-Irtysh river basin in the Khanty–Mansi autonomous region: Yugra in 2006–2007. Geochem Int 47(7):657–671

    Article  Google Scholar 

  26. Voronina AV, Nogovinsyna EV (2015) Kinetic features of cesium sorption onto a polyfunctional ferrocyanide sorbent. Radiochemistry 57(1):79–86

    Article  CAS  Google Scholar 

  27. Sebesta F, Stefula V (1990) Composite ion exchanger with ammonium molybdophosphate and its properties. J Radioanal Nucl Chem 140(1):15–21

    Article  CAS  Google Scholar 

  28. Brewer KN, Todd TA, Wood DJ (1999) AMP-PAN column tests for the removal of Cs-137 from actual and simulated INEEL high-activity wastes. Czechoslov J Phys 49(1):959–964

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Semenishchev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenishchev, V.S., Voronina, A.V. & Gupta, D.K. Use of the inorganic hexacyanoferrate sorbents for analysis of radiocesium in aqueous samples. J Radioanal Nucl Chem 321, 133–139 (2019). https://doi.org/10.1007/s10967-019-06555-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06555-0

Keywords

Navigation