Skip to main content
Log in

Preparation of amino-modified hydroxyapatite and its uranium adsorption properties

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The amino-hydroxyapatite (HAP-NH2) was synthesized by grafted amino functional groups onto hydroxyapatite. The uranium adsorption performance of HAP-NH2 was studied under different conditions. The results indicated that HAP-NH2 possessed high adsorption capacity (96 mg g−1), wide pH values range (2–8) and fast adsorption rate (20 min). The adsorption kinetic and adsorption isotherm models of HAP-NH2 revealed that the uranium adsorption process was belonged to chemical adsorption. Furthermore, the main forces between uranium ions and HAP-NH2 were attributed to hydroxyl, amino and phosphorous functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang X, Liu Y, Sun Z et al (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314(1):251–258

    Article  CAS  Google Scholar 

  2. Min X, Li Y, Ke Y et al (2017) Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Sci Technol 76(1):192–200

    Article  CAS  Google Scholar 

  3. Ke Y, Peng N, Xue K et al (2018) Sulfidation behavior and mechanism of zinc silicate roasted with pyrite. Appl Surf Sci 435:1011–1019

    Article  CAS  Google Scholar 

  4. Wang X, Li P, Liu Y et al (2018) Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans. J Radioanal Nucl Chem 317(2):1033–1040

    Article  CAS  Google Scholar 

  5. Chai LY, Wang X, Wang HY et al (2017) Formation of one-dimensional composites of poly(m-phenylenediamine)s based on Streptomyces, for adsorption of hexavalent chromium. Int J Environ Sci Technol 15(7):1–12

    Google Scholar 

  6. Wang T, Zhang L, Li C et al (2015) Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 49(9):5654–5662

    Article  CAS  Google Scholar 

  7. Bogya ES, Barabás R, Csavdári A et al (2009) Hydroxyapatite modified with silica used for sorption of copper. Chem Pap 63(5):568–573

    Article  CAS  Google Scholar 

  8. Handley-Sidhu S, Renshaw JC, Moriyama S et al (2011) Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis. Environ Sci Technol 45(16):6985–6990

    Article  CAS  Google Scholar 

  9. Feng Y, Gong JL, Zeng GM et al (2010) Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162(2):487–494

    Article  CAS  Google Scholar 

  10. Baybas D, Ulusoy U (2012) Polyacrylamide–hydroxyapatite composite: preparation, characterization and adsorptive features for uranium and thorium. J Solid State Chem 194:1–8

    Article  CAS  Google Scholar 

  11. Li S, Bai H, Wang J et al (2012) In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chem Eng J 193:372–380

    Article  Google Scholar 

  12. Chattanathan SA, Clement TP, Kanel SR et al (2013) Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones. Water Air Soil Pollut 224(2):1429

    Article  Google Scholar 

  13. Yokoi T, Kubota Y, Tatsumi T (2012) Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl Catal A 421–422(15):14–37

    Article  Google Scholar 

  14. Hao S, Zhong Y, Pepe F, Zhu W (2012) Adsorption of Pb2+, and Cu2+, on anionic surfactant-templated amino-functionalized mesoporous silicas. Chem Eng J 189–190(2):160–167

    Article  Google Scholar 

  15. Duan S, Wang Y, Liu X et al (2017) Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment. ACS Sustain Chem Eng 5(5):3597–4477

    Article  Google Scholar 

  16. Sert S, Eral M (2010) Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2-MCM-41) using statistical design method. J Nucl Mater 406(3):285–292

    Article  CAS  Google Scholar 

  17. Guo X, Feng Y, Ma L et al (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60

    Article  CAS  Google Scholar 

  18. Sánchezenríquez J, Reyesgasga J (2013) Obtaining Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication. Ultrason Sonochem 20(3):948–954

    Article  Google Scholar 

  19. Rajendran K, Keefe CD (2010) Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique. Cryst Res Technol 45(9):939–945

    Article  CAS  Google Scholar 

  20. Wang G, Wang X, Chai X et al (2010) Adsorption of uranium (VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47(3–4):448–451

    Article  CAS  Google Scholar 

  21. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  22. Frendlich HMA (1906) Concerning adsorption in solutions. J Phys Chem 57:385

    Google Scholar 

  23. Zhao Y, Liu C, Feng M et al (2010) Solid phase extraction of uranium (VI) onto benzoylthiourea anchored activated carbon. J Hazard Mater 176(1–3):119–124

    Article  CAS  Google Scholar 

  24. Ünlü N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136(2):272–280

    Article  Google Scholar 

  25. Shao D, Jiang Z, Wang X et al (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113(4):860

    Article  CAS  Google Scholar 

  26. Sun Y, Yang S, Sheng G et al (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 105:40–47

    CAS  Google Scholar 

  27. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2):434–441

    Article  CAS  Google Scholar 

  28. Chen Z, Zeng G, Tang C (2009) Adsorption of uranium from wastewater by hydroxyapatite. Met Min 5:135–137

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51702189, 51802176, 51472146), Shandong Provincial Natural Science Foundation (Grant Nos. ZR2017BEM033, ZR2017QEM002), and Science and Technology Development Project of Shandong Province (2014GZX201008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Guo or Yujun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Ma, B., Guo, X. et al. Preparation of amino-modified hydroxyapatite and its uranium adsorption properties. J Radioanal Nucl Chem 319, 437–446 (2019). https://doi.org/10.1007/s10967-018-6357-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6357-4

Keywords

Navigation