Skip to main content
Log in

The production of no carrier added arsenic radioisotopes in nuclear reactors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The comparative advantages and drawbacks of some reactor-produced arsenic radioisotopes having favourable characteristics for their use as tracers are discussed. The study comprises their preparation based on: (a) capture reactions on germanium; (b) threshold reactions on germanium, selenium and bromine; (c) secondary reactions on germanium, induced by recoil protons and tritons produced by the action of neutrons on lithium. The recommended options for the production of relatively short half-life radionuclides are 77As by capture on germanium or 76As via (n,α) reaction on bromine, while two different ways are applicable for the production of 74As, longer-lived radioisotope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mertz W (1981) The essential trace elements. Sci New Ser 213(4514):1332–1338

    CAS  Google Scholar 

  3. Prashanth L, Kattapagari KK, Chitturi RT, Baddam RVR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4, 75–85. http://www.jdrntruhs.org/article.asp?issn=2277-8632;year=2015;volume=4;issue=2;spage=75;epage=85;aulast=Prashanth. Accessed Aug 2017

  4. Hunter FT, Kip AF, Irvine JW (1942) Radioactive tracer studies on arsenic injected as potassium arsenite. I. Excretion and localization in tissues. J Pharmacol Exp Ther 76(2):207–220

    CAS  Google Scholar 

  5. Andreae MO, Klumpp D (1979) Biosynthesis and release of organoarsenic compounds by marine algae. Environ Sci Technol 13:738–741

    Article  CAS  Google Scholar 

  6. Vather M, Norin H (1980) Metabolism of 74As-labeled trivalent and pentavalent inorganic arsenic in mice. Environ Res 21:446–457

    Article  Google Scholar 

  7. Vather M (1981) Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environ Res 25:283–293

    Google Scholar 

  8. Lerman S, Clarkson TW (1983) The metabolism of arsenite and arsenate by the rat. Fundam Appl Toxicol 3:309–314

    Article  CAS  PubMed  Google Scholar 

  9. Vather M, Marafante E (1983) Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits. Chem Biol Interact 47:29–44

    Article  Google Scholar 

  10. Cazin JC, Cazin M, Gaborit JL, Chaoui A, Boiron J, Belon P, Cherruault Y, Papapanayotou C (1987) A study of the effect of decimal and centesimal dilutions of arsenic on the retention and mobilization of arsenic in the rat. Hum Toxicol 6:315–320

    Article  CAS  PubMed  Google Scholar 

  11. Zhao F-J, Stroud JL, Asaduzzaman Khan M, McGrath SP (2012) Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil 350:413–420

    Article  CAS  Google Scholar 

  12. Beard HC, Lyerly LA (1961) Separation of arsenic from antimony and bismuth by solvent extraction. Anal Chem 33:1781–1782

    Article  CAS  Google Scholar 

  13. Hamilton EI, Minsk MJ, Cleary JJ (1967) The loss of elements during the decomposition of biological materials with special reference to arsenic, sodium, strontium and zinc. Analyst 92:257–259

    Article  CAS  PubMed  Google Scholar 

  14. Ray BJ, Johnson DL (1972) A method for the neutron activation analysis of natural waters for arsenic. Anal Chim Acta 62:196–199

    Article  CAS  PubMed  Google Scholar 

  15. Bajo S (1978) Volatilization of arsenic (III, V), antimony (III, V), and selenium (IV, VI) from mixtures of hydrogen fluoride and perchloric acid solution: application to silicate analysis. Anal Chem 50:849–851

    Article  Google Scholar 

  16. Shreedhara Murthy RS, Ryan DE (1983) Determination of arsenic, molybdenum, uranium, and vanadium in seawater by neutron activation analysis after preconcentration by colloid flotation. Anal Chem 55:682–684

    Article  Google Scholar 

  17. Magill J, Pfennig G, Dreher R, Sóti Z (2012) Karlsuher Nuklidkarte, 8. Auflage, Nucleonica GmbH

  18. National Nuclear Data Center, NuDat 2 database. http://www.nndc.bnl.gov/nudat2/. Accessed May 2018

  19. Wycoff DE, Gott MD, DeGraffenreid AJ, Morrow RP, Sisay N, Embree MF, Ballard B, Fassbender ME, Cutler CS, Ketring AR, Jurisson SS (2014) Chromatographic separation of selenium and arsenic: a potential 72Se/72As generator. J Chromatogr A 1340:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mughabghab SF (2003) Thermal neutron capture cross sections resonance integrals and g-factors. IAEA Nuclear Data Section, Vienna

    Google Scholar 

  21. Bokhari TH, Mushtaq A, Khan IU (2009) Separation of no-carrier-added arsenic-77 from neutron irradiated germanium. Radiochim Acta 97:503–506

    Article  CAS  Google Scholar 

  22. Paul RL, Clay Davis W, Yu L, Murphy KE, Guthrie WF, Leber DD, Bryan CE, Vetter TW, Shakirova G, Mitchell G, Kyle DJ, Jarrett JM, Caldwell KL, Jones RL, Eckdahl S, Wermers M, Maras M, Palmer CD, Verostek MF, Geraghty CM, Steuerwald AJ, Parsons PJ (2014) Certification of total arsenic in blood and urine standard reference materials by radiochemical neutron activation analysis and inductively coupled plasma-mass spectrometry. J Radioanal Nucl Chem 299:1555–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gott MD, DeGraffenreid AJ, Feng Y, Phipps MD, Wycoff DE, Embree MF, Cutler CS, Ketring AR, Jurisson SS (2016) Chromatographic separation of germanium and arsenic for the production of high purity 77As. J Chromatogr A 1441:68–74

    Article  CAS  Google Scholar 

  24. Basile D, Birattari C, Bonard M, Goetz L, Sabbioni E, Salomone A (1981) Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes. Appl Radiat Isot 32:403–410

    Article  CAS  Google Scholar 

  25. Spahn I, Steyn GF, Nortier FM, Coenen HH, Qaim SM (2007) Excitation functions of natGe(p, xn)71,72,73,74As reactions up to 100 MeV with a focus on the production of 72As for medical and 73As for environmental studies. Appl Radiat Isot 65:1057–1064

    Article  CAS  PubMed  Google Scholar 

  26. Chattopadhyay S, Pal S, Vimalnath KV, Das MK (2007) A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets. Appl Radiat Isot 65:1202–1207

    Article  CAS  PubMed  Google Scholar 

  27. Fassbender M, Taylor W, Vieira D, Nortier M, Bach H, John K (2012) Proton beam simulation with MCNPX/CINDER’90: germanium metal activation estimates below 30 MeV relevant to the bulk production of arsenic radioisotopes. Appl Radiat Isot 70:72–75

    Article  CAS  Google Scholar 

  28. Calamand A (1974) Cross-sections for fission neutron spectrum induced reactions. In: Handbook on nuclear activation cross-sections pp 273–334. Technical Report Series No. 156, International Atomic Energy Agency, Vienna

  29. Roy JC, Hawton JJ (1960) Table of estimated cross sections for (n,p), (n,a) and (n,2n) reactions in a fission neutron spectrum. Report CRC-1003, Atomic Energy of Canada, Ltd., Chalk River, Ontario

  30. Horibe O (1983) A new empirical rule for the estimation of fission neutron spectrum averaged cross sections of the (n, p) and (n,α) reactions. Ann Nucl Energy 10:359–373

    Article  CAS  Google Scholar 

  31. Dorval EL, Arribére MA, Ribeiro Guevara S, Cohen IM, Kestelman AJ, Ohaco RA, Segovia MS, Yunes AN, Arrondo M (2006) Fission neutron spectrum averaged cross sections for threshold reactions on arsenic. J Radioanal Nucl Chem 270:603–608

    Article  CAS  Google Scholar 

  32. Deschuyter M, Hoste J (1966) Mean reactor cross sections for (n, p) reactions on selenium. Radiochim Acta 7:90–95

    Google Scholar 

  33. Pla RR, Cohen IM (1983) Determination of the averaged cross-section of the 79Br(n,α)76As reaction in a fission spectrum. Radiochem Radioanal Lett 58:169–174

    CAS  Google Scholar 

  34. Cohen IM, Siri S, Fornaciari Iljadica MC (2014) A survey of new methods for production of some radionuclides, at laboratory scale, through secondary reactions in nuclear reactors. Adv Chem Eng Sci 4:300–307

    Article  CAS  Google Scholar 

  35. Ortec, GammaVision-32 Software User’s Manual, 6th Edition, 2003

  36. Guin R, Das SK, Saha SK (1998) Separation of carrier-free arsenic from germanium. J Radioanal Nucl Chem 227:181–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Siri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siri, S., Segovia, M.S. & Cohen, I.M. The production of no carrier added arsenic radioisotopes in nuclear reactors. J Radioanal Nucl Chem 319, 175–184 (2019). https://doi.org/10.1007/s10967-018-6278-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6278-2

Keywords

Navigation