Skip to main content
Log in

Electron accelerator driven system for transmutation studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An accelerator driven system has been studied by irradiation with 20 MeV electrons. Slow, intermediate and fast neutrons were measured by activation and Solid State Track Detectors. The total neutrons emitted from the target were 0.005 per electron, equally divided to slow and intermediate-fast energy regions. An agreement was presented between experimental results and simulations using the GEANT 4 code. The transmutation efficiency of 238U has been estimated as1.04 (± 0.09) × 10−7 per U-gram. Furthermore, the neutron total cross section of natPb was estimated 9.4 ± 1.8 b for fast neutrons and 6.0 ± 0.7 b for slow-intermediate neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fraser JS et al (1965) Neutron production in thick targets bombarded by high energy protons. Phys Can 21:17–18

    Google Scholar 

  2. Vasil’kov RG et al (1968) Neutron yields and thermal neutron fluxes in a lead-water system bombarded by high energy protons. Atomnaya Energiya 25:479–483

    Google Scholar 

  3. Bowman CD et al (1992) Nuclear energy generation and waste transmutation using an accelerator driven intense thermal neutron source. Nucl Instrum Methods A 320:336–367

    Article  Google Scholar 

  4. Carminati F et al (1993) An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator. Print CERN/AT/93-47, CERN, Geneva

  5. Andriamonje S et al (1995) Experimental determination of the energy generated in nuclear cascades by a high-energy beam. Phys Lett B 348:697–709

    Article  CAS  Google Scholar 

  6. Pienkowski L et al (1997) Neutron multiplicity distributions for 1.94 to 5 GeV/c proton-, antiproton-, pion-, kaon-, and deuteron-induced spallation reactions on thin and thick targets. Phys Rev C 56:1909–1917

    Article  CAS  Google Scholar 

  7. Carpenter JM et al (1999) The 10.000.000.000-Volt question: what is the best choice of proton energy to drive a pulsed spallation neutron source? Phys B 270:272–279

    Article  CAS  Google Scholar 

  8. Letourneau A et al (2000) Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons. Nucl Instrum Methods B 170:299–322

    Article  CAS  Google Scholar 

  9. Leray S et al (2002) Spallation neutron production by 0.8, 1.2 and 1.6 GeV protons on various targets. Phys Rev C 65:044621

    Article  Google Scholar 

  10. Gandini A, Salvatores M (2002) The physics of subcritical multiplying systems. J Nucl Sci Technol 39:673–686

    Article  CAS  Google Scholar 

  11. Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog Part Nucl Phys 66:144–166

    Article  CAS  Google Scholar 

  12. Krivopustov MI et al (1997) First experiments on transmutation studies on I-129 and Np-237 using relativist protons of 3.7 GeV. J Radioanal Nucl Chem 222:267–270

    Article  CAS  Google Scholar 

  13. Brandt R et al (1999) Transmutation studies using SSNTD and radiochemistry and the associate production of secondary neutron. Radiat Meas 31:497–506

    Article  CAS  Google Scholar 

  14. Adam J et al (2006) Transmutation studies with GAMMA-2 setup using relativistic proton beams of the JINR Nuclotron. Nucl Instrum Methods A 562:741–742

    Article  CAS  Google Scholar 

  15. Barber WC, George WD (1959) Neutron yields from targets bombarded by electrons. Phys Rev 116:1551–1559

    Article  CAS  Google Scholar 

  16. Findlay DJS (1990) Applications of photonuclear reactions. Nucl Instrum Methods B 50:314–320

    Article  Google Scholar 

  17. Brolly B, Vėrtes P (2004) Concept of a small-scale accelerator driven system for nuclear waste transmutation, part 1: target optimization. Ann Nucl Energy 31:585–600

    Article  CAS  Google Scholar 

  18. Brolly B, Vėrtes P (2005) Concept of a small-scale accelerator driven system for nuclear waste transmutation, part 2: investigation of burnup. Ann Nucl Energy 32:417–433

    Article  CAS  Google Scholar 

  19. Gulevich A et al (2008) Concept of electron accelerator-driven system based on subcritical cascade reactor. Prog Nucl Energy 50:347–352

    Article  CAS  Google Scholar 

  20. Zuokang L et al (2013) The conceptual design of electron-accelerator-driven subcritical thorium molten salt system. Energy Procedia 39:267–274

    Article  Google Scholar 

  21. Polański A et al (2015) Neutrons production in heavy extended targets by electrons of energy from 15 to 1000 MeV. Prog Nucl Energy 78:1–9

    Article  Google Scholar 

  22. Tziaka C et al (2018) Application of passive methods for electron flux measurements regarding to 238U electron-disintegration studies. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-5925-y

    Article  Google Scholar 

  23. Zamani M et al (2005) Neutron yields from massive lead and uranium targets irradiated with relativistic protons. Radiat Meas 40:410–414

    Article  CAS  Google Scholar 

  24. Remy G et al (1970) Heavy fragment emission in high-energy reactions on heavy nuclei. Journal de Physique 31:27–34

    Article  CAS  Google Scholar 

  25. Harvey JR et al (1998) The contribution of Eurados and CENDOS to etched track neutron dosimetry. Radiat Prot Dosim 77:267–304

    Article  CAS  Google Scholar 

  26. Manolopoulou M et al (2006) Detection of spallation neutrons and protons using natCd activation technique in transmutation experiments at Dubna. Appl Radiat Isot 64:823–829

    Article  CAS  Google Scholar 

  27. Zheltonozhsky VO, Mazur VM, Symochko DM, Bigan ZM, Poltorzhytska TV (2012) Investigation of the isomeric states excitation processes for 111Cd and 115Cd isotopes in (γ, n) reaction at the γ-quantum energies in giant dipole resonance region. Yaderna Fizika ta Energetika 13:140–144

    Google Scholar 

  28. Zheltonozhsky VO et al (2012) Investigation of the isomeric states excitation processes for 111Cd and 115Cd isotopes in (γ, n) reaction at the γ-quantum energies in giant dipole resonance region. Yaderna Fizika ta Energetika 13:140–144

    Google Scholar 

  29. Vagena E, Stoulos S, Manolopoulou M (2016) Analysis of improved neutron activation technique using thick foils fro application on medical LINAC environment. Nucl Instrum Methods A 806:271–279

    Article  CAS  Google Scholar 

  30. Agostinelli S et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods A 506:250–303

    Article  CAS  Google Scholar 

  31. ENDF/B-x (2018) and the references within. Brookhaven National Laboratory. http://www.nndc.bnl.gov. Accessed September 2018

  32. Sosnin AN et al (2002) Monte Carlo modelling of neutron spectra in the U/Pb-assembly irradiated with protons. Izv RAS Phys Ser 66:1494–1496

    CAS  Google Scholar 

  33. Stoulos S et al (2003) Application of activation method on Dubna experimental transmutation set-ups. Appl Radiat Isot 58:169–175

    Article  CAS  Google Scholar 

  34. Zamani M et al (2005) Neutron yields from massive lead and uranium targets irradiated with relativistic protons. Radiat Meas 40:410–414

    Article  CAS  Google Scholar 

  35. Laptev T et al (2004) Neutron total cross sections of Pb-204, Pb-206, Pb-207 and Pb-208 and the neutron electric polarizability. In: Proceedings of joint institute for nuclear research (JINR) Reports, vol. 10, No. 2003, Dubna, Russia

  36. Schwartz RB, Schrack RA, Heaton II HT, (1974) MeV total neutron cross sections. National Bureau of Standards Monograph, No. 138, Washington, DC, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoulos, S., Fragopoulou, M., Vagena, E. et al. Electron accelerator driven system for transmutation studies. J Radioanal Nucl Chem 318, 1209–1217 (2018). https://doi.org/10.1007/s10967-018-6218-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6218-1

Keywords

Navigation