Skip to main content
Log in

A study of the simulation of the influence on formed neutron spectrum when Li target was covered with polyimide protective film

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

7Li(p,n)7Be reaction can be used for neutron generation for use in BNCT, but the lithium target must be protected from exposure to air, typically by being kept in vacuum. Keeping lithium target in vacuum and isolated conditions in all stages of construction and replacement in the system can be difficult and expensive. In this article we propose a method to prevent lithium’s reactivity with air using proper materials. The results show that use of polyimide, is a good choice for preventing lithium’s reactivity with air, and it is also a cost-effective choice. In addition, this choice has many benefits among them the reduction of fast neutron flux to 41% and it also establishes the IAEA-recommended in-air parameters. Dosimetric evaluation in the simulated head phantom shows that our designed beam is useful to treat deep seated brain tumors with the reduction of damage to the healthy tissue when treating deep-seated brain tumors. The dose in the first point in healthy tissue will decreases about 17%. All calculations were performed with the MCNPX code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bosko A, Zhilchenkov D et al (2004) GE PET trace cyclotron as a neutron source for boron neutron capture therapy. Appl Radiat Isot 61:1057–1062

    Article  CAS  Google Scholar 

  2. Soloway AH, Tjarks W et al (1998) The chemistry of neutron capture therapy. Chem Rev 98:1515–1562

    Article  CAS  Google Scholar 

  3. Bleuel DL, Donahue RL et al (1998) Designing accelerator based epithermal neutron beams for boron neutron capture therapy. Med Phys 25:1725–1734

    Article  CAS  Google Scholar 

  4. Sakamoto S, Kiger WS et al (1999) Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy. Med Phys 26:1979–1998

    Article  CAS  Google Scholar 

  5. Lee CL, Zhou XL (1999) Thick target neutron yields for the 7Li(p,n)7Be reaction near threshold. Nucl Instrum Methods Phys Res Sect B 152:1–11

    Article  CAS  Google Scholar 

  6. Montagnini B, Cerullo N et al (2002) Spectrum shaping of accelerator-based neutron beams for BNCT. Nucl Instrum Methods Phys Res Sect A 476:90–98

    Article  CAS  Google Scholar 

  7. Tanaka K, Kobayashi T (2006) Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p,n)7Be neutrons at proton energy of 2.5 MeV. Med Phys 33:1688–1694

    Article  CAS  Google Scholar 

  8. Bengua G, Kobayashi T et al (2004) Optimization parameters for BDE in BNCT using near threshold 7Li(p,n)7Be direct neutrons. Appl Radiat Isot 61:1003–1008

    Article  CAS  Google Scholar 

  9. Matysiak W, Prestwich WV et al (2012) Measurements of the neutron spectra from the 7Li(p,n) accelerator based neutron source: position and angular dependences. Radiat Phys Chem 81:1673–1682

    Article  CAS  Google Scholar 

  10. Halfon S, Paul M et al (2011) High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy. Appl Radiat Isot 69:1654–1656

    Article  CAS  Google Scholar 

  11. Randers-Pehrson G, Brenner DJ (1998) A practical target system for accelerator-based BNCT which may effectively double the dose rate. Med Phys 25:894–896

    Article  CAS  Google Scholar 

  12. Bayanov B, Belov V et al (2009) A neutron producing target for BINP accelerator-based neutron source. Appl Radiat Isot 67:282–284

    Article  Google Scholar 

  13. Kamada S, Takada M et al (2014) Development of target system for intense neutron source of p-Li reaction. Appl Radiat Isot 88:195–197

    Article  CAS  Google Scholar 

  14. Bayanov B, Belov V et al (2006) Neutron producing target for accelerator based neutron capture therapy. J Phys Conf Ser 41:460–465

    Article  CAS  Google Scholar 

  15. Kwon J, Kim J et al (2015) A novel synthesis method for an open-cell microsponge polyimide for heat insulation. Polymer 56:68–72

    Article  CAS  Google Scholar 

  16. Kim H, Jang J (2000) Corrosion protection and adhesion promotion for polyimide/copper system using silane-modified polymeric materials. Polymer 41:6553–6561

    Article  CAS  Google Scholar 

  17. Huang YC, Lo TY et al (2014) Anti-corrosion characteristics of polyimide/h-boron nitride composite films with different polymer configurations. Surf Coat Technol 260:113–117

    Article  CAS  Google Scholar 

  18. Feng L, Iorh JO (2014) corrosion resistance and lifetime of polyimide-b-polyurea novel copolymer coatings. Prog Org Coat 77:590–599

    Article  CAS  Google Scholar 

  19. Huang TC et al (2011) Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: corrosion protection and electrochromic properties. Electrochim Acta 56:10151–10158

    Article  CAS  Google Scholar 

  20. Bessonov MI, Koton MM et al (1987) Polyimides—thermally stable polymers. Plenum Publishing Corp, New York

    Google Scholar 

  21. Huttunen-Saarivirta E, Yudin VE et al (2011) Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations. Prog Org Coat 72:269–278

    Article  CAS  Google Scholar 

  22. Pelowitz D (2008) MCNPX users manual, LA-CP-07-1473. Ver. 2.6.0. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  23. Alger MSM (1987) High temperature and fire resistant polymers. In: Blackie DRW (ed) Specialty polymers. Chapman and Hall, New York

    Google Scholar 

  24. Ramos MMD, Stoneham AM et al (1993) Aluminium/polyimide adhesion. Acta Metall Mater 41:2105–2111

    Article  CAS  Google Scholar 

  25. Ramos M (2002) Theoretical study of metal–polyimide interfacial properties. Vacuum 64:255–260

    Article  CAS  Google Scholar 

  26. Skeist I (ed) (1990) The handbook of adhesives. Nostrand Reinhold, New York. ISBN 0-442-28013-0

    Google Scholar 

  27. Vollmer B (1973) Polymer chemistry, Berlin, Heidelberg. New York

  28. Wolfgang AG et al (2012) Neutron capture therapy. Springer, Heidelberg

    Google Scholar 

  29. Ahmadi Ganjeh Z, Masoudi SF (2014) Neutron beam optimization based on a 7Li(p;n)7Be reaction for treatment of deep-seated brain tumors by BNCT. Chin Phys C 38:108203(1-6)

    Google Scholar 

  30. Incropera FP, DeWitt PD (2002) Introduction to heat transfer, 4th edn. Wiley, New York

    Google Scholar 

  31. IAEA-TECDOC-1223 (2001) Current status of neutron capture therapy. International Atomic Energy Agency, Vienna

    Google Scholar 

  32. Auterinen I, Seren T et al (2004) Measurement of free beam neutron spectra at eight BNCT facilities world wide. Appl Radiat Isot 61:1021–1026

    Article  CAS  Google Scholar 

  33. Cerullo N, Esposito J et al (2004) Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment. Nucl Instrum Methods Phys Res Sect B 213:641–645

    Article  CAS  Google Scholar 

  34. Herrera MS, Gonzalez SJ et al (2013) Evaluation of performance of an accelerator-based BNCT facility for the treatment of different tumor targets. Phys Med 29:436–449

    Article  CAS  Google Scholar 

  35. Snyder WS, Ford MR et al (1969) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of heterogeneous phantom. J Nucl Med Suppl 3:7–52

    Google Scholar 

  36. Rasouli FS, Masoudi SF (2015) A study on the optimum fast neutron flux for Boron Neutron Capture Therapy of deep-seated tumors. Appl Radiat Isot 96:45–51

    Article  CAS  Google Scholar 

  37. KigerIII WS, Sakamoto S, Harling OK (1999) Neutronic design of a fission converter based epithermal neutron beam for neutron capture therapy. Nucl Sci Eng 131:1–22

    Article  Google Scholar 

  38. Torabi F, Masoudi SF, Rahmani F, Rasouli FS (2014) BSA optimization and dosimetric assessment for an electron linac based BNCT of deep-seated brain tumors. J Radioanal Nucl Chem 300:1167–1174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Eslami-Kalantari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi Ganjeh, Z., Eslami-Kalantari, M. A study of the simulation of the influence on formed neutron spectrum when Li target was covered with polyimide protective film. J Radioanal Nucl Chem 318, 1025–1031 (2018). https://doi.org/10.1007/s10967-018-6161-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6161-1

Keywords

Navigation