Skip to main content
Log in

Determination of tritium activity and chemical forms in the exhaust gas from a large fusion test device

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A water bubbler system that can distinguish chemical forms of tritium was proposed for long-term tritium monitoring of the exhaust gas of a large fusion test device. The characteristics and performance of the water bubbler system were evaluated under operational conditions and confirmed to be suitable for tritium monitoring. For the tritium measurements, the water bubbler system determined the tritium activity and distinguished the chemical forms of tritium. The tritium activity and chemical forms in the exhaust gas provided helpful information to understand the tritium behavior in the large fusion test device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Komori A, Yamada H, Imagawa S, Kaneko O, Kawahata K, Mutoh K, Ohyabu N, Takeiri Y, Ida K, Mito T, Nagayama Y, Sakakibara S, Sakamoto R, Shimozuma T, Watanabe KY, Motojima O, LHD Experiment Group (2010) Goal and achievements of large helical device project. Fusion Sci Technol 58:1–11

    Article  CAS  Google Scholar 

  2. Takeiri Y (2018) Prospect towards steady-state helical fusion reactor based on progress of LHD project entering the deuterium experiment phase. IEEE Trans Plasma Sci 46:1141–1148

    Article  Google Scholar 

  3. Osakabe M, Takeiri Y, Morisaki T, Motojima G, Ogawa K, Isobe M, Tanaka M, Murakami S, Shimizu A, Nagaoka K, Takahashi H, Nagasaki K, Takahashi H, Fujita T, Oya Y, Sakamoto M, Ueda Y, Akiyama T, Kasahara H, Sakakibara S, Sakamoto R, Tokitani M, Yamada H, Yokoyama M, Yoshimura Y, LHD Experiment Group (2017) Current status of large helical device and its prospect for deuterium experiment. Fusion Sci Technol 72:199–210

    Google Scholar 

  4. IAEA (1991) Safe handling of tritium: review of data and experience. IAEA Technical Reports Series No. 324, Vienna

  5. DOE Handbook (2009) Tritium handling and safe storage. DOE-HDBK-1129-2008, U.S. Department of Energy, Washington

    Google Scholar 

  6. Osborne RV (1974) Sampling for tritiated water vapour. In: Proceedings of the third international congress of the international radiation protection association, Washington D.C., 1973, CONF-730907-P2, pp 1428–1433

  7. Shank KE, Easterly CE (1976) Tritium instrumentation for a fusion reactor power plant. ORNL/TM-5344

  8. Östlund HG, Mason AS (1974) Atmospheric HT and HTO. Tellus 26:91–102

    Article  Google Scholar 

  9. Okai T, Takashima Y (1989) Analytical method for atmospheric tritium with a portable tritium sampling system. J Radioanal Nucl Chem 130:399–407

    Article  CAS  Google Scholar 

  10. Otlet RL, Walker AJ, Caldwell-Nichols CJ (1992) Practical environmental, working area and stack discharge samplers, passive and dynamic, for measurement of tritium as HTO and HT. Fusion Technol 21:550–555

    Article  CAS  Google Scholar 

  11. Wood MJ, McElroy RGC, Surette RA, Brown RM (1993) Tritium sampling and measurement. Health Phys 65(6):610–627

    Article  CAS  Google Scholar 

  12. Munyon WJ, Reilly DW, Webb J (2008) AGHCF gaseous-effluent tritium sampling system: design considerations and performance testing results. Health Phys 94(1):75–84

    Article  CAS  Google Scholar 

  13. SDEC France, MARC 7000 tritium sampler. http://radioprotection.sdec-france.com/tritium-sampler-4-vials-marc-7000.html. Accessed 2 July 2018

  14. Overhoff technology, TASC (tritium in air sample collector)-HTO-HT. http://www.overhoff.com/uploads/Chapter5.pdf. Accessed 2 July 2018

  15. RCD lockinge, dynamic HTO/HT discriminating dry bed absorber sampler. http://rcd-lockinge.co.uk/equipment.htm. Accessed 2 July 2018

  16. Uda T, Sugiyama T, Tanaka M, Munakata K, Momoshima N (2006) Developments of gaseous water, hydrogen and methane sampling system for environmental tritium monitoring. Fusion Eng Des 81:1385–1390

    Article  CAS  Google Scholar 

  17. Tanaka M, Kato H, Yamamoto Y, Iwata C (2017) Development of an active tritium sampler for discriminating chemical forms without the use of combustion gases in a fusion test facility. Appl Radiat Isot 125:53–59

    Article  CAS  Google Scholar 

  18. Duda JM, Goff PL, Leblois Y, Ponsard S (2018) Efficiencies of tritium (3H) bubbling systems. J Environ Radioact 189:236–249

    Article  CAS  Google Scholar 

  19. Masaki K, Yagyu J, Arai T, Kaminaga A, Kodama K, Miya N, Ando T, Hiratsuka H, Saidoh M (2002) Wall conditioning and experience of the carbon-based first wall in JT-60U. Fusion Sci Technol 42:386–395

    Article  CAS  Google Scholar 

  20. Isobe K, Nakamura H, Kaminaga A, Higashijima S, Nishi M, Konishi S, Nishikawa M, Tanabe T (2005) Tritium release behavior from JT-60U vacuum vessel during air exposure phase and wall conditioning phase. Fusion Sci Technol 48:302–305

    Article  CAS  Google Scholar 

  21. Nakamura H, Higashijima S, Isobe K, Kaminaga A, Horikawa T, Kubo H, Miya N, Nishi M, Konishi S, Tanabe T (2004) Application of glow discharges for tritium removal from JT-60U vacuum vessel. Fusion Eng Des 70:163–173

    Article  CAS  Google Scholar 

  22. Miya N, Nemoto M, Toyoshima N (1994) Tritium release from JT-60U vacuum vessel following high-power heated deuterium operations. Fusion Technol 26:507–511

    Article  CAS  Google Scholar 

  23. Kaminaga A, Horikawa T, Nakamura H, Isobe K, Higashijima S, Arai T, Miya N, Nishi M, Tanabe T (2003) Analysis of exhausted gas in JT-60 deuterium operation. In: Proceedings of 20th IEEE/NPSS symposium on fusion engineering, San Diego, 14–17 Oct 2003

  24. Kaminaga A, Nakamura H, Isobe K, Arai T (2005) Exhaust gas monitoring device of nuclear fusion experimental device. In: Proceedings of Tech2005, Osaka, Japan, 3–4 Mar 2005, p 83 (in Japanese)

  25. ICRP (1990) Recommendations of the international commission on radiological protection. ICRP Publication 60. Ann. ICRP 21(1–3)

  26. Iwai Y, Sato K, Taniuchi J, Noguchi H, Kubo H, Harada N, Oshima Y, Yamashita T (2011) Room-temperature reactor packed with hydrophobic catalysts for the oxidation of hydrogen isotopes released in a nuclear facility. J Nucl Sci Technol 48(8):1184–1192

    Article  CAS  Google Scholar 

  27. Uda T, Tanaka M, Munakata K (2008) Characteristics of honeycomb catalysts for oxidation of tritiated hydrogen and methane gases. Fusion Eng Des 83:1715–1720

    Article  CAS  Google Scholar 

  28. Tanaka M, Suzuki N, Kato H, Kondo T, Yokosawa M, Kawamata T, Ikeda M, Meguro T, Tanaka T, Sonoi K (2018) Design and commissioning of the exhaust detritiation system for the large helical device. Fusion Eng Des 127:275–283

    Article  CAS  Google Scholar 

  29. Tanaka M, Uda T, Shinozaki Y, Munakata K (2009) Hydrogen and methane oxidation performances of hybrid honeycomb catalyst for a tritium removal system. Fusion Eng Des 84:1818–1822

    Article  CAS  Google Scholar 

  30. Isobe K, Nakamura H, Kaminaga A, Tsuzuki K, Higashijima S, Nishi M, Kobayashi Y, Konishi S (2006) Characterization of JT-60U exhaust gas during experimental operation. Fusion Eng Des 81:827–832

    Article  CAS  Google Scholar 

  31. Roth J (2005) In: Clark EH, Reiter DH (eds) Nuclear fusion research; understanding plasma–surface interactions. Springer, Heidelberg

    Google Scholar 

  32. Grünhagen S, Brennan PD, Knipe S, Stagg R, Yorkshades J, Contributors JET-EFDA (2011) Analysis of hydrocarbons of the JET divertor cryogenic pump at the end of the carbon wall campaign using a micro gas chromatograph. Fusion Sci Technol 60(3):931–936

    Article  Google Scholar 

  33. Grünhagen Romanelli S, Brezinsek S, Butler B, Coad JP, Drenik A, Giroud C, Jachmich S, Keenan T, Kruezi U, Mozetic M, Oberkofler M, Parracho A, Romanelli M, Smith R, Yorkshades J, Contributors JET-EFDA (2014) Gas analyses of the first complete JET cryopump regeneration with ITER-like wall. Phys Scr T159:014068

    Article  Google Scholar 

  34. Nakano T, Kubo H, Higashijima S, Asakura N, Takenaga H, Sugie T, Itami K (2002) Measurement of the chemical sputtering yields of CH4/CD4 and C2Hx/C2Dx at the carbon divertor plates of JT-60U. Nucl Fusion 42:689–696

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIFS budget ULAA023 and JSPS KAKENHI Grant Number 17K06998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M., Kato, H., Suzuki, N. et al. Determination of tritium activity and chemical forms in the exhaust gas from a large fusion test device. J Radioanal Nucl Chem 318, 877–885 (2018). https://doi.org/10.1007/s10967-018-6075-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6075-y

Keywords

Navigation