Skip to main content
Log in

Determination of gold in biological materials by radiochemical neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A radiochemical neutron activation analysis procedure was developed for the determination of trace amounts of gold in biological materials. The procedure was realized with irradiation of reference and test samples in a nuclear reactor, selective and quantitative separation of gold using inorganic MnO2 Resin and gamma-ray spectrometric measurement of 198Au. The method is characterized by a low limit of detection of gold at ng g−1 level. Results shows that the method can be applied to the determination of trace amounts of gold in tissues for medical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kabata-Pendias A, Pendias H (2010) Trace elements in soil and plants, 4th edn. CRC Press, New York

    Google Scholar 

  2. Durovic MD, Bugarcic ZD, Eldik R (2017) Stability and reactivity of gold compounds—from fundamental aspects to applications. Coord Chem Rev 338:186–206

    Article  Google Scholar 

  3. Wai Yin Sun R, Zhang M, Li D, Li M, Wong A (2016) Enhanced anti-cancer activities of a gold (III) pyrrolidinedithiocarbamato complex incorporated in a biodegradable metal organic framework. J Inorg Biochem 163:1–7

    Article  Google Scholar 

  4. Higby GJ (1982) Gold in medicine. Gold Bull 15(4):130–140

    Article  CAS  Google Scholar 

  5. Tieknik ERT (2003) Gold compounds in medicine: potential anti-tumor agents. Gold Bull 36(4):117–124

    Article  Google Scholar 

  6. Żelazowska R, Pasternak K (2007) Noble metals: silver (Ag), gold (Au) and platinum (Pt) in biology and medicine. Bromatologia i Chemia Toksykologiczna 2:205–209 (in Polish)

    Google Scholar 

  7. Sigler WD (1983) Parenteral gold in the treatment of rheumatoid arthritis. Am J Med 75(6):59–62

    Article  CAS  Google Scholar 

  8. Kast RE (2010) Glioblastoma invasion, cathepsin B, and the potential for both to be inhibited by auranofin, an old anti-rheumatoid arthritis drug. Cen Eur Neurosurg 71(3):139–142

    Article  CAS  Google Scholar 

  9. Choleva TG, Kappi AF, Tsogas GZ, Vlessidis AG, Giokas DL (2016) In-situ suspensed aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry. Talanta 151:91–99

    Article  CAS  Google Scholar 

  10. Vial S, Reis LR, Oliveria JM (2017) Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr Opin Soild State Mater 21:92–112. https://doi.org/10.1016/j.cossms.2016.03.006

    Article  CAS  Google Scholar 

  11. Bodelon G, Costats C, Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM (2017) Gold nanoparticles for regulation of cell function and behavior. Nano Today 13:40–60. https://doi.org/10.1016/j.nantod.2016.12.014

    Article  CAS  Google Scholar 

  12. Panyala NR, Pena-Mendez EN, Havel J (2009) Gold and gold nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed 7:75–91

    CAS  Google Scholar 

  13. Lopez-Chaves C, Soto-Alverado J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomed Nanotechnol Biol Med 14:1–12

    Article  CAS  Google Scholar 

  14. Dillard JC, Miao-Lin H, Tappel AL (1987) Effect of aurothioglucose on glutathione and glutathione-metabolizing and related enzymes in rat liver and kidney. Chem Biol Interact 64:103–114

    Article  CAS  Google Scholar 

  15. Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic Biol Med 42(6):872–881

    Article  CAS  Google Scholar 

  16. Nakaya A, Sagawa M, Muto A, Uchida H, Ikeda Y, Kizaki M (2011) The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-kappaB activity. Leuk Res 35:243–249. https://doi.org/10.1016/j.leukres.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306. https://doi.org/10.1016/j.addr.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  18. Park SJ, Kim IS (2005) The role of p38 MAPK activation in auranofin-induced apoptosis of human promyelocytic leukaemia HL-60 cells. Br J Pharmacol 146(4):506–513

    Article  CAS  Google Scholar 

  19. Jia YP, Ma BY, Wei XW, Qian ZY (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 28:691–702

    Article  CAS  Google Scholar 

  20. Kabata-Pendias A, Pendias H (1999) Biogeochemia pierwiastków śladowych. PWN, Warszawa (in Polish)

    Google Scholar 

  21. Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H (2009) Protracted elimination of gold nanoparticles from mouse liver. Nanomed Nanotechnol Biol Med 5:162–169

    Article  CAS  Google Scholar 

  22. De Jong WH, Burger MC, Verheijen MA, Geertsma RE (2010) Detection of the presence of gold nanoparticles in organs by transmission electron microscopy. Materials 3:4681–4694

    Article  Google Scholar 

  23. Kuroda R, Yoskihuni N (1974) Ion exchange separation and spectrofotomethric determination of traces of gold. Microchim Acta 62:653–662

    Article  Google Scholar 

  24. Iyer K, Krishnamoorthy KR (1976) Determination of gold in low grade ores and concentrates by anion exchange separation followed by neutron activation. J Radioanal Chem 33:243–249

    Article  Google Scholar 

  25. Matsubara I, Takeda Y, Ishida K (2000) Improved recovery of trace amounts of gold (III), palladium (II) and platinum (IV) from large amounts of associated base metals using anion-exchange resin. Fresenius J Anal Chem 366:213–217

    Article  CAS  Google Scholar 

  26. Figueidero AMG, Enzweiler J, Sarkis JES, Jorge APS, Shibuya EK (2000) NAA and UV laser ablation ICP-MS for platinum group elements and gold determination in NiS fire assay buttons: a comparison between two methods. J Radioanal Nucl Chem 244:623–625

    Article  Google Scholar 

  27. Oschenkun KM, Fafouteli P, Oschenkun-Petropolu M (2002) Determination and distribution of gold in Greek bauxites of the Parnassos–Ghiona area by gamma-spectroscopy after ion exchange separation. J Radioanal Nucl Chem 253:257–262

    Article  Google Scholar 

  28. Nyarko BJB, Serfor-Armah Y, Holzbecher J, Osae EK, Akaho EHK, Carboo D, Chatt A (2003) Epithermal instrumental neutron activation analysis for the determination of gold and arsenic in Ghanaian gold tailings using conventional and anti-coincidence counting. J Radioanal Nucl Chem 256:253–257

    Article  CAS  Google Scholar 

  29. Greenberg RR, Bode P, De Nadai Fernandes E A (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta B 66:193–241

    Article  CAS  Google Scholar 

  30. Dybczyński RS, Danko B, Polkowska-Motrenko H, Samczyński Z (2007) RNAA in metrology: a highly accurate (definintive) method. Talanta 71:529–536

    Article  Google Scholar 

  31. Polkowska-Motrenko H, Danko B, Dybczyński R (2004) Metrological assessment of the high accuracy RNAA method for determination of cobalt in biological materials. Anal Bioanal Chem 379:221–226

    Article  CAS  Google Scholar 

  32. Chajduk E, Polkowska-Motrenko H, Dybczyński RS (2008) A definitive RNAA method for Se determination in biological samples. Uncertainty evaluation and assessment of degree of accuracy. Accredit Qual Assur 13:443–451

    Article  CAS  Google Scholar 

  33. Remya Devi PS, Dalvi AA, Swain KK, Verma R (2015) Comparison and statistical evaluation of neutron activation methodologies for the determination of gold in copper concentrate. Anal Methods 7:3833–3840

    Article  Google Scholar 

  34. Samczyński Z, Danko B, Dybczyński RS (2000) Application of Chelex 100 ion exchange resin for separation and determination of palladium, platinum and gold in geological and industrial materials by neutron activation anlysis. Chem Anal 45:843–857

    Google Scholar 

  35. Bigliocca C, Girardi F, Paulky J, Sabbioni E (1967) Radiochemical separations by adsorption on manganese dioxide. Anal Chem 13:1634–1639

    Article  Google Scholar 

  36. Moon DS, Burnett WC, Nour S, Horwitz P, Bond A (2003) Preconcentration of radium isotopes from natural waters using MnO2 resin. Appl Radiat Isot 59(4):255–262

    Article  CAS  Google Scholar 

  37. Varga Z (2007) Preparation and characterization of manganese dioxide impregnated resin for radionuclide pre-concentration. Appl Radiat Isot 65:1095–1100

    Article  CAS  Google Scholar 

  38. Kučera J, Bode P, Stĕpánek V (2000) The 1993 ISO guide to the expression of uncertainty in measurements applied to NAA. J Radioanal Nucl Chem 60:115–122

    Article  Google Scholar 

  39. Currie LA (1968) Limits for qualitative detection and quantitative determination. Appl Radiochem Anal Chem 40:586–593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iga Zuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuba, I., Polkowska-Motrenko, H. Determination of gold in biological materials by radiochemical neutron activation analysis. J Radioanal Nucl Chem 318, 967–972 (2018). https://doi.org/10.1007/s10967-018-6056-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6056-1

Keywords

Navigation