Skip to main content
Log in

Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Non-invasive molecular imaging techniques are accruing more interest in the last decades. Several radiolabelling elements have been FDA-approved and are currently used to characterize tumors. In this study, the DNA intercalating agent doxorubicin was radiolabelled with 125I. Several parameters for the radiolabelling reaction were investigated and optimized. A maximum yield of 94 ± 0.3% was reached after reacting 20 μg of doxorubicin with 200 μg Chloramine-T at pH 5 for 30 min. The in vivo stability of 125I-doxorubicin is validated by the low propensity for thyroid uptake in mice. The preclinical T/NT ratio was approximately 6.4 at 30 min. Docking and molecular dynamics confirmed that the radiolabelling of doxorubicin did not affect (or slightly improved its binding to DNA). Overall, 125I-doxorubicin was demonstrated to be a promising non-invasive probe for solid tumor imaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  CAS  PubMed  Google Scholar 

  2. Saha GB (2012) Physics and radiobiology of nuclear medicine. Springer, New York

    Google Scholar 

  3. Sakr TM, El-Safoury DM, Awad GAS, Motaleb MA (2013) Biodistribution of 99mTc-sunitinib as a potential radiotracer for tumor hypoxia imaging. J Label Compd Radiopharm 56:392–395

    Article  CAS  Google Scholar 

  4. Etzioni R, Urban N, Ramsey S et al (2003) Early detection: the case for early detection. Nat Rev Cancer 3:243

    Article  CAS  PubMed  Google Scholar 

  5. Marten K, Bremer C, Khazaie K, Sameni M, Sloane B, Tung CH, Weissleder R (2002) Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122:406–414

    Article  PubMed  Google Scholar 

  6. Alencar H, Mahmood U, Kawano Y, Hirata T, Weissleder R (2005) Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia 7:977–983

    Article  PubMed  PubMed Central  Google Scholar 

  7. Evans JA, Nishioka NS (2005) Endoscopic confocal microscopy. Curr Opin Gastroenterol 21:578–584

    Article  PubMed  Google Scholar 

  8. Harisinghani MG, Barentsz J, Hahn PF, Deserno W, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  9. Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354:496–507

    Article  CAS  PubMed  Google Scholar 

  10. Altiparmak B, Lambrecht FY, Bayrak E, Durkan K (2010) Design and synthesis of 99mTc-citro-folate for use as a tumor-targeted radiopharmaceutical. Int J Pharm 400:8–14

    Article  CAS  PubMed  Google Scholar 

  11. Santos-Cuevas CL, Ferro-Flores G, de Murphy CA, Ramírez FDM, Luna- Gutiérrez MA, Pedraza-López M, García-Becerra R, Ordaz-Rosado D (2009) Design, preparation, in vitro and in vivo evaluation of 99mTc-N2S2-Tat (49-57)-bombesin: a target-specific hybrid radiopharmaceutical. Int J Pharm 375:75–83

    Article  CAS  PubMed  Google Scholar 

  12. de Barros ALB, das Graças Mota L, de Aguiar Ferreira C, de Oliveira MC, de Góes AM, Cardoso VN (2010) Bombesin derivative radiolabeled with technetium-99m as agent for tumor identification. Bioorg Med Chem Lett 20:6182–6184

    Article  CAS  PubMed  Google Scholar 

  13. Sakr TM, Motaleb MA, Ibrahim IT (2012) 99mTc-meropenem as a potential SPECT imaging probe for tumor hypoxia. J Radioanal Nucl Chem 291:705–710

    Article  CAS  Google Scholar 

  14. Sakr TM, Essa BM, El-Essawy FA, El-Mohty AA (2014) Synthesis and biodistribution of 99mTc-PyDA as a potential marker for tumor hypoxia imaging. Radiochemistry 56:76–80

    Article  CAS  Google Scholar 

  15. Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F] fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428

    Article  CAS  PubMed  Google Scholar 

  16. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, Peters LJ (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncolo. J Clin Oncol 24:2098–2104

    Article  PubMed  Google Scholar 

  17. Parliament MB, Chapman JD, Urtasun RC, McEwan AJ, Golberg L, Mercer JR, Mannan RH, Wiebe LI (1992) Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 65:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stypinski D, McQuarrie SA, McEwan AJB, Wiebe LI (2018) Pharmacokinetics and scintigraphic imaging of the hypoxia-imaging agent [123I] IAZA in healthy adults following exercise-based cardiac stress. Pharmaceutics 10:25

    Article  PubMed Central  Google Scholar 

  19. Quon A, Gambhir SS (2005) FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol 23:1664–1673

    Article  CAS  PubMed  Google Scholar 

  20. Guller U, Nitzsche EU, Schirp U, Viehl CT, Torhorst J, Moch H, Langer I, Marti WR, Oertli D, Harder F, Zuber M (2002) Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-d-glucose: not yet! Breast Cancer Res Treat 71:171–173

    Article  PubMed  Google Scholar 

  21. Larson SM (1994) Cancer or inflammation? A holy grail for nuclear medicine. J Nucl Med 35:1653–1655

    CAS  PubMed  Google Scholar 

  22. Stöber B, Tanase U, Herz M et al (2006) Differentiation of tumour and inflammation: characterisation of [methyl-3 H] methionine (MET) and O-(2-[18F] fluoroethyl)-l-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 33:932–939

    Article  CAS  PubMed  Google Scholar 

  23. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    CAS  PubMed  Google Scholar 

  24. Kubota K, Kubota R, Yamada S, Tada M (1995) Effects of radiotherapy on the cellular uptake of carbon-14 labeledl-methionine in tumor tissue. Nucl Med Biol 22:193–198

    Article  CAS  PubMed  Google Scholar 

  25. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N (1995) High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36:1301–1306

    CAS  PubMed  Google Scholar 

  26. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36:484–492

    CAS  PubMed  Google Scholar 

  27. Sugawara Y, Gutowski TD, Fisher SJ, Brown RS, Wahl RL (1999) Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, l-methionine, 67 Ga-citrate, and 125I-HSA. Eur J Nucl Med 26:333–341

    Article  CAS  PubMed  Google Scholar 

  28. Reinhardt MJ, Kubota K, Yamada S, Iwata R, Yaegashi H (1997) Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, l-methionine and thymidine. J Nucl Med 38:280

    CAS  PubMed  Google Scholar 

  29. Gutowski TD (1992) Experimental studies of 18-F-2-fluoro-2-deoxy-d-glucose (FDG) in infection and in reactive lymph nodes. J Nucl Med 33:925

    Google Scholar 

  30. Wahl RL, Fisher SJ (1993) A comparison of FDG, l-methionine and thymidine accumulation into experimental infections and reactive lymph-nodes. J Nucl Med 34:104

    Google Scholar 

  31. Al-Wabli RI, Sakr TM, Khedr MA, Selim AA, El MA, Zaghary WA (2016) Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99 m. Chem Cent J 10:1–12

    Article  CAS  Google Scholar 

  32. Wan WX, Yang M, Pan SR, Yu CJ, Wu NJ (2008) [99m Tc]polyamine analogs as potential tumor imaging agent. Drug Dev Res 69:520–525

    Article  CAS  Google Scholar 

  33. Mallia MB, Subramanian S, Mathur A et al (2010) Synthesis and evaluation of 2-, 4-, 5-substituted nitroimidazole-iminodiacetic acid-99mTc(CO)3 complexes to target hypoxic tumors. J Label Compd Radiopharm 53:535–542

    Article  CAS  Google Scholar 

  34. Wang J, Yang J, Yan Z, Duan X, Tan C, Shen Y, Wu W (2011) Synthesis and preliminary biological evaluation of [99mTc(CO)3(IDA–PEG3–CB)] for tumor imaging. J Radioanal Nucl Chem 287:465–469

    Article  CAS  Google Scholar 

  35. Ding R, He Y, Xu J, Liu H, Wang X, Feng M, Qi C, Zhang J, Peng C (2012) Preparation and bioevaluation of 99mTc nitrido radiopharmaceuticals with pyrazolo[1,5-a]pyrimidine as tumor imaging agents. Med Chem Res 21:523–530

    Article  CAS  Google Scholar 

  36. Machac J, Krynyckyi B, Kim C (2002) Peptide and antibody imaging in lung cancer. Semin Nucl Med 32:276–292

    Article  PubMed  Google Scholar 

  37. Ibrahim AB, Sakr TM, Khoweysa OM, Motaleb MA, El-Bary AA, El-Kolaly MT (2014) Formulation and preclinical evaluation of 99mTc-gemcitabine as a novel radiopharmaceutical for solid tumor imaging. J Radioanal Nucl Chem 302:179–186

    Article  CAS  Google Scholar 

  38. Hsia CC, Huang FL, Hung GU, Shen LH, Chen CL, Wang HE (2011) The biological characterization of 99mTc-BnAO-NI as a SPECT probe for imaging hypoxia in a sarcoma-bearing mouse model. Appl Radiat Isot 69:649–655

    Article  CAS  PubMed  Google Scholar 

  39. Kuchar M, Oliveira MC, Gano L, Santos I, Kniess T (2012) Radioiodinated sunitinib as a potential radiotracer for imaging angiogenesis—radiosynthesis and first radiopharmacological evaluation of 5-[125I]Iodo-sunitinib. Bioorg Med Chem Lett 22:2850–2855

    Article  CAS  PubMed  Google Scholar 

  40. Baishya R, Nayak DK, Chatterjee N, Halder KK, Karmakar S, Debnath MC (2014) Synthesis, characterization, and biological evaluation of 99mTc(CO)3-labeled peptides for potential use as tumor targeted radiopharmaceuticals. Chem Biol Drug Des 83:58–70

    Article  CAS  PubMed  Google Scholar 

  41. Breeman WA, Hofland LJ, Bakker WH, van der Pluij M, Van Koetsveld PM, de Jong M, Setyono-Han B, Kwekkeboom DJ, Visser TJ, Lamberts SW, Krenning EP (1993) Radioiodinated somatostatin analogue RC-160: preparation, biological activity, in vivo application in rats and comparison with [123I-Tyr3]octreotide. Eur J Nucl Med 20:1089–1094

    Article  CAS  PubMed  Google Scholar 

  42. Maecke HR, Reubi JC (2011) Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med 52:841–844. https://doi.org/10.2967/jnumed.110.084236

    Article  CAS  PubMed  Google Scholar 

  43. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170

    Article  CAS  PubMed  Google Scholar 

  44. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45:649–656

    CAS  PubMed  Google Scholar 

  45. Momparler RL, Karon M, Siegel SE, Avila F (1976) Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 36:2891–2895

    CAS  PubMed  Google Scholar 

  46. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433

    Article  CAS  PubMed  Google Scholar 

  47. Frederick CA, Williams LD, Ughetto G, Van der Marel GA, Van Boom JH, Rich A, Wang AH (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29:2538–2549

    Article  CAS  PubMed  Google Scholar 

  48. Pigram W-J, Fuller W, Hamilton LD (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol 235:17

    Article  CAS  PubMed  Google Scholar 

  49. Carlson M, Watson AL, Anderson L, Largaespada DA, Provenzano PP (2017) Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors. J Biomed Opt 22:116010

    Google Scholar 

  50. Zweit J, Carnochan P, Goodall R, Ott R (1994) Nickel-57-doxorubicin, a potential radiotracer for pharmacokinetic studies using PET: production and radiolabelling. J Nucl Biol Med Med (Turin, Italy 1991) 38:18–21

    CAS  Google Scholar 

  51. Rizvi FA, Bokhari TH, Roohi S, Mushtaq A (2012) Direct labeling of doxorubicin with technetium-99m: its optimization, characterization and quality control. J Radioanal Nucl Chem 293:303–307

    Article  CAS  Google Scholar 

  52. Fernandes RS, de Oliveira Silva J, Lopes SCA, Chondrogiannis S, Rubello D, Cardoso VN, Oliveira MC, Ferreira LA, de Barros AL (2016) Technetium-99m-labeled doxorubicin as an imaging probe for murine breast tumor (4T1 cell line) identification. Nucl Med Commun 37:307–312

    CAS  PubMed  Google Scholar 

  53. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568

    Article  CAS  PubMed  Google Scholar 

  54. Swidan MM, Sakr TM, Motaleb MA et al (2014) Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging. J Label Compd Radiopharm 57:593–599

    Article  CAS  Google Scholar 

  55. Swidan MM, Sakr TM, Motaleb MA, El-Bary AA, El-Kolaly MT (2015) Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging. J Radioanal Nucl Chem 303:531–539

    Article  CAS  Google Scholar 

  56. Sakr TM (2014) Synthesis and preliminary affinity testing of 123I/125I-N-(3-iodophenyl)-2-methylpyrimidine-4,6-diamine as a novel potential lung scintigraphic agent. Radiochemistry 56:200–206

    Article  CAS  Google Scholar 

  57. Ibrahim AB, Sakr TM, Khoweysa OM, Motaleb MA, El-Bary AA, El-Kolaly MT (2015) Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging. J Radioanal Nucl Chem 303:967–975

    Article  CAS  Google Scholar 

  58. Essa BM, Sakr TM, Khedr MA, El-Essawy FA, El-Mohty AA (2015) 99mTc-amitrole as a novel selective imaging probe for solid tumor: in silico and preclinical pharmacological study. Eur J Pharm Sci 76:102–109

    Article  CAS  PubMed  Google Scholar 

  59. Sakr TM, Nawar MF, Fasih TW, El-Bayoumy S, El-Rehim HA (2017) Nano-technology contributions towards the development of high performance radioisotope generators: the future promise to meet the continuing clinical demand. Appl Radiat Isot 129:67–75

    Article  CAS  PubMed  Google Scholar 

  60. Mohamed KO, Nissan YM, El-Malah AA, Ahmed WA, Ibrahim DM, Sakr TM, Motaleb MA (2017) Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers. Eur J Med Chem 135:424–433

    Article  CAS  PubMed  Google Scholar 

  61. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  63. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation1. J Mol Biol 285:1735–1747

    Article  CAS  PubMed  Google Scholar 

  64. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  65. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65:712–725

    Article  CAS  Google Scholar 

  66. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  CAS  PubMed  Google Scholar 

  67. Alaraby Salem M, Brown A (2015) Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics. Phys Chem Chem Phys 17:25563–25571

    Article  CAS  PubMed  Google Scholar 

  68. Roe DR, Cheatham TE (2013) PTRAJ and {CPPTRAJ}: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095

    Article  CAS  PubMed  Google Scholar 

  69. Turner PJ (2005) XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR

  70. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  71. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was enabled in part by support provided by Westgrid (www.westgrid.ca) and Compute/Calcul Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Alaraby Salem or Tamer M. Sakr.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Ethical approval

Authors report that all applicable international and institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.B., Alaraby Salem, M., Fasih, T.W. et al. Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics. J Radioanal Nucl Chem 317, 1243–1252 (2018). https://doi.org/10.1007/s10967-018-6013-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6013-z

Keywords

Navigation