Skip to main content
Log in

Bioremediation of effluent from a uranium mill tailings repository in South China by AzollaAnabaena

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Hydroponic experiments were conducted on the removal of uranium, heavy metals and nutrients from the effluent of a uranium mill tailings repository in South China by AzollaAnabaena. The plant–microbe symbiont was kept in the effluent for 30 days, and it was found that U, Fe, Mn, Cu, Zn, Pb, Cd, total phosphorus (TP), total nitrogen (TN) and SO42− reduced by 87.6, 99.1, 98.8, 88.2, 91, 78.3, 77.5, 93.4, 98.7 and 76.7%, respectively. Specifically, the concentration of uranium reduced to 0.039 mg L−1, which is below the limits of contaminants by the Department of Environmental Protection of China. The concentration of Fe, Cu, Zn, Pb, TP and TN in the effluent reached the quality standard for drinking water. The results showed that AzollaAnabaena can be used for the bioremediation of the effluent from the uranium mill tailings repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jha VN, Tripathi RM, Sethy NK, Sahoo SK (2016) Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India. Sci Total Environ. 539:175–184

    Article  CAS  PubMed  Google Scholar 

  2. Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediat. 6:347–362

    Article  CAS  Google Scholar 

  3. Bernhard G, Brendler V, Nitsche H, Geipel G (1998) Uranium speciation in waters of different uranium mining areas. J Alloy Compd 271:201–205

    Article  Google Scholar 

  4. Pratas J, Favas PJ, Paulo C, Rodrigues N, Prasad M (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. Int J Phytoremediat 14:221–234

    Article  CAS  Google Scholar 

  5. Kurttio P, Auvinen A, Salonen L, Sahae H, Pekkanen J, Mäkeläinen I, Väisänen SB, Penttilä IM, Komulainen H (2002) Renal effects of uranium in drinking water. Environ Health Persp 110:337–342

    Article  CAS  Google Scholar 

  6. Anke M, Seeber O, Müller R, Schäfer U, Zerull J (2009) Uranium transfer in the food chain from soil to plants, animals and man. Chemie der Erde - Geochem 69:75–90

    Article  CAS  Google Scholar 

  7. Liu Y, Gu P, Jia L, Zhang G (2016) An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions. J Hazard Mater 302:82–89

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Wan Z (2015) Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Prog Nucl Energy 78:47–55

    Article  CAS  Google Scholar 

  9. Marques R, Helmy R, Waterhouse D (2015) Enhancing radiolytic stability upon concentration of tritium-labeled pharmaceuticals utilizing centrifugal evaporation. J Labelled Compd Radiopharm 58:261–263

    Article  CAS  Google Scholar 

  10. Qkh AJ, Almasoud FI, Ababneh AM, Al-Hobaib AS (2016) Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: water and sludge radium content, radon air concentrations and dose rates. Sci Total Environ 1030:563–564

    Google Scholar 

  11. Newete SW, Byrne MJ (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res Int 23:10630–10643

    Article  CAS  PubMed  Google Scholar 

  12. Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G, Werner P (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131:46–53

    Article  CAS  Google Scholar 

  13. Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  PubMed  Google Scholar 

  14. Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4935-3

    Article  Google Scholar 

  15. Brouwer P, Bräutigam A, Külahoglu C, Tazelaar AOE, Kurz S, Nierop KGJ, Werf A, Weber APM, Schluepmann H (2014) Azolla domestication towards a biobased economy? New Phytol 202:1069–1082

    Article  CAS  PubMed  Google Scholar 

  16. Haller WT, Sutton DL, Barlowe WC (1974) Effects of salinity on growth of several aquatic macrophytes. Ecology 55:891–894

    Article  Google Scholar 

  17. Bharti S, Banerjee TK (2012) Phytoremediation of the coalmine effluent. Ecotoxicol Environ Saf 81:36–42

    Article  CAS  PubMed  Google Scholar 

  18. Shafi N, Pandit AK, Kamili AN, Mushtaq B (2015) Heavy metal accumulation by Azolla pinnata of Dal Lake ecosystem, India. Development 1:8–12

    Google Scholar 

  19. Pan CC, Hu N, Ding DX, Hu JS, Li GY, Wang YD (2016) An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azollaanabaena symbiotic system. J Radioanal Nucl Chem 307:385–394

    Article  CAS  Google Scholar 

  20. Hu N, Ding D, Li GY, Wang Y, Li L, Zheng J (2012) Uranium removal from water by five aquatic plants. Acta Sci Circum 32:1637–1645

    CAS  Google Scholar 

  21. Tan YJ, Hu N, Zhang H, Hu JS, Huang XW, Ding DX (2017) Adsorption behavior of different species of uranium by Azolla Anabaena. Acta Sci Circum 37:3713–3719

    CAS  Google Scholar 

  22. Carrière M, Thiebault C, Milgram S, Avoscan L, Proux O, Gouget B (2006) Citrate does not change uranium chemical speciation in cell culture medium but increases its toxicity and accumulation in NRK-52E cells. Chem Res Toxicol 19:1637–1642

    Article  CAS  PubMed  Google Scholar 

  23. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  24. Hu N, Ding DX, Pan CC, Hu JS, Li L, Li GY, Wang YD, Zheng JF (2014) Distribution of uranium in the plant–microbe symbiotic system-Azolla Imbircata. J Univ South China

  25. Hu N, Ding DX, Zhao WC, Hu JS, Tan YJ, Li L, Zheng JF, Wang YD (2017) The role of Anabaena in the AzollaAnabaena symbiotic system for the removal of uranium from water. Acta Sci Circum 37:162–168

    CAS  Google Scholar 

  26. Pniewska ZS, Bennicelli RP, Balakhnina TI, Szajnocha K (2005) Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys 19:251–255

    Google Scholar 

  27. Fort DJ, Mathis MB, Walker R (2014) Toxicity of sulfate and chloride to early life stages of wild rice (Zizania palustris). Environ Toxicol Chem 33:2802–2809

    Article  CAS  PubMed  Google Scholar 

  28. Iowa D (2009) Water quality standards review: chloride, sulfate and total dissolved solids. Iowa Department of Natural Resources Consultation Package

  29. Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol. https://doi.org/10.1016/S1369-5266(00)00063-7

    Article  PubMed  Google Scholar 

  30. Zhou X, Wang G (2010) Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. J Environ Sci. https://doi.org/10.1016/S1001-0742(09)60310-7

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (U1401231, 11505093 and 11305087), Program of Science and Technology Department of Hunan Province (2016Sk2041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Dexin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xinwei, H., Yongdong, W., Nan, H. et al. Bioremediation of effluent from a uranium mill tailings repository in South China by AzollaAnabaena. J Radioanal Nucl Chem 317, 739–746 (2018). https://doi.org/10.1007/s10967-018-5934-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5934-x

Keywords

Navigation