Examination of fault zones and uranium concentration effects on the in-soil radon levels at Central Jordan Area

  • A. Alsabbagh
  • S. Alzghoul
  • S. Marashdeh
  • R. Abu Saleem
Article
  • 5 Downloads

Abstract

An assessment of radon concentrations at Khan Alzabib was implemented using two different approaches; the radon exhalation approach and the subsoil approach. The measurements were analyzed in view of two parameters, uranium concentration levels and the presence of fault zones. Radon measurements from the radon exhalation approach were related to the uranium concentration in the collected samples and a positive correlation was observed showing higher exhalation rates of radon for higher uranium concentration. Radon measurements from the subsoil approach showed the effect of fault zones in promoting the migration process of radon.

Keywords

Radon Subsoil measurements Central Jordan Area 

Notes

Acknowledgements

This work was supported by the applied scientific research award offered by JOSCO and Engicon companies in Jordan. The authors wish to thank Dr. Samer Kahook (Director General of JUMCO) and Dr. Ma’mon Makahleh (Director of the Research Directorate at JAEC) for their great support throughout this work. The authors also wish to thank the entire JUMCO technical team for their support and assistance.

References

  1. 1.
    van der Heyden A, Sader A, Al Dajani A, Barahmeh T (2015) Exploration trenches for uranium resource evaluation. Appl Earth Sci Trans Inst Min Metall Sect B 124:78–89CrossRefGoogle Scholar
  2. 2.
    Worley Parsons Resources and Energy (2011) White paper on nuclear energy in JordanGoogle Scholar
  3. 3.
    Alsabbagh A, Zaidan L, Harahsheh I et al (2016) Investigation of Jordanian uranium resources in carbonate rocks. J Radioanal Nucl Chem 308:1063–1070CrossRefGoogle Scholar
  4. 4.
    Jönsson G (1995) Radon gas—where from and what to do? Radiat Meas 25:537–546CrossRefGoogle Scholar
  5. 5.
    Al-nafiey MS, Jaafar MS, Bin Bauk S, Salih NF (2012) Design and fabrication of new radon chamber for radon calibration factor of measurement. Int J Sci Eng Res 3:1–6Google Scholar
  6. 6.
    Singh AK, Sengupta D, Prasad R (1999) Radon exhalation rate and uranium estimation in rock samples from Bihar uranium and copper mines using the SSNTD technique. Appl Radiat Isot 51:107–113CrossRefGoogle Scholar
  7. 7.
    Mittal S, Rani A, Mehra R (2016) Radon levels in drinking water and soil samples of Jodhpur and Nagaur districts of Rajasthan, India. Appl Radiat Isot 113:53–59CrossRefGoogle Scholar
  8. 8.
    Rani A, Mittal S, Mehra R, Ramola RC (2015) Assessssment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Appl Radiat Isot 101:122–126CrossRefGoogle Scholar
  9. 9.
    Ioannides K, Papachristodoulou C, Stamoulis K et al (2003) Soil gas radon: a tool for exploring active fault zones. Appl Radiat Isot 59:205–213CrossRefGoogle Scholar
  10. 10.
    Kristiansson K, Malmqvist L (1982) Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport. Geophysics 47:1444–1452CrossRefGoogle Scholar
  11. 11.
    Al-Tamimi MH, Abumurad KM (2001) Radon anomalies along faults in North of Jordan. Radiat Meas 34:397–400CrossRefGoogle Scholar
  12. 12.
    Atallah M, Al-Bataina B, Mustafa H (2001) Radon emanation along the dead sea transform (rift)in Jordan. Environ Geol 40:1440–1446CrossRefGoogle Scholar
  13. 13.
    King C-Y, Zhang W, King B-S (1993) Radon anomalies on three kinds of faults in California. Pure Appl Geophys 141:111–124CrossRefGoogle Scholar
  14. 14.
    Fytikas M, Lombardi S, Papachristou M et al (1999) Investigation of the 1867 Lesbos (NE Aegean) earthquake fault pattern based on soil-gas geochemical data. Tectonophysics 308:249–261CrossRefGoogle Scholar
  15. 15.
    Sakoda A, Hanamoto K, Ishimori Y et al (2010) First model of the effect of grain size on radon emanation. Appl Radiat Isot 68:1169–1172CrossRefGoogle Scholar
  16. 16.
    Barillon R, Özgümüs A, Chambaudet A (2005) Direct recoil radon emanation from crystalline phases. Influence of moisture content. Geochim Cosmochim Acta 69:2735–2744CrossRefGoogle Scholar
  17. 17.
    Semkow TM (1990) Recoil-emanation theory applied to radon release from mineral grains. Geochim Cosmochim Acta 54:425–440CrossRefGoogle Scholar
  18. 18.
    Sasaki T, Gunji Y, Okuda T (2004) Mathematical modeling of radon emanation. J Nucl Sci Technol 41:142–151CrossRefGoogle Scholar
  19. 19.
    Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60:807–815CrossRefGoogle Scholar
  20. 20.
    Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl Radiat Isot 69:1422–1435CrossRefGoogle Scholar
  21. 21.
    Breitner D, Arvela H, Hellmuth KH, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions—a pilot study on granitic esker sand sample. J Environ Radioact 101:1002–1006CrossRefGoogle Scholar
  22. 22.
    Chitra N, Danalakshmi B, Supriya D et al (2017) Study of Radon and Thoron exhalation from soil samples of different grain sizes. Appl Radiat Isot 133:75–80CrossRefGoogle Scholar
  23. 23.
    Khoury HN (2014) Importance of clay minerals in jordan case study: Volkonskoite as a sink for hazardous elements of a high pH plume. Jordan J Earth Environ Sci 6:1–10Google Scholar
  24. 24.
    Abzalov MZ, van der Heyden A, Saymeh A, Abuqudaira M (2015) Geology and metallogeny of Jordanian uranium deposits. Appl Earth Sci 124:63–77CrossRefGoogle Scholar
  25. 25.
    Barjous M (1986) The geology of Siwaqa. Bull 4. Natural Resources Authority, Amman, JordanGoogle Scholar
  26. 26.
    Jaser D (1986) The geology of Khan Ez Zabib. Bull 3. Natural Resources Authority, Amman, JordanGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringJordan University of Science and TechnologyIrbidJordan

Personalised recommendations