Skip to main content
Log in

Examination of fault zones and uranium concentration effects on the in-soil radon levels at Central Jordan Area

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An assessment of radon concentrations at Khan Alzabib was implemented using two different approaches; the radon exhalation approach and the subsoil approach. The measurements were analyzed in view of two parameters, uranium concentration levels and the presence of fault zones. Radon measurements from the radon exhalation approach were related to the uranium concentration in the collected samples and a positive correlation was observed showing higher exhalation rates of radon for higher uranium concentration. Radon measurements from the subsoil approach showed the effect of fault zones in promoting the migration process of radon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van der Heyden A, Sader A, Al Dajani A, Barahmeh T (2015) Exploration trenches for uranium resource evaluation. Appl Earth Sci Trans Inst Min Metall Sect B 124:78–89

    Article  CAS  Google Scholar 

  2. Worley Parsons Resources and Energy (2011) White paper on nuclear energy in Jordan

  3. Alsabbagh A, Zaidan L, Harahsheh I et al (2016) Investigation of Jordanian uranium resources in carbonate rocks. J Radioanal Nucl Chem 308:1063–1070

    Article  CAS  Google Scholar 

  4. Jönsson G (1995) Radon gas—where from and what to do? Radiat Meas 25:537–546

    Article  Google Scholar 

  5. Al-nafiey MS, Jaafar MS, Bin Bauk S, Salih NF (2012) Design and fabrication of new radon chamber for radon calibration factor of measurement. Int J Sci Eng Res 3:1–6

    Google Scholar 

  6. Singh AK, Sengupta D, Prasad R (1999) Radon exhalation rate and uranium estimation in rock samples from Bihar uranium and copper mines using the SSNTD technique. Appl Radiat Isot 51:107–113

    Article  CAS  PubMed  Google Scholar 

  7. Mittal S, Rani A, Mehra R (2016) Radon levels in drinking water and soil samples of Jodhpur and Nagaur districts of Rajasthan, India. Appl Radiat Isot 113:53–59

    Article  CAS  PubMed  Google Scholar 

  8. Rani A, Mittal S, Mehra R, Ramola RC (2015) Assessssment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Appl Radiat Isot 101:122–126

    Article  CAS  PubMed  Google Scholar 

  9. Ioannides K, Papachristodoulou C, Stamoulis K et al (2003) Soil gas radon: a tool for exploring active fault zones. Appl Radiat Isot 59:205–213

    Article  CAS  PubMed  Google Scholar 

  10. Kristiansson K, Malmqvist L (1982) Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport. Geophysics 47:1444–1452

    Article  CAS  Google Scholar 

  11. Al-Tamimi MH, Abumurad KM (2001) Radon anomalies along faults in North of Jordan. Radiat Meas 34:397–400

    Article  CAS  Google Scholar 

  12. Atallah M, Al-Bataina B, Mustafa H (2001) Radon emanation along the dead sea transform (rift)in Jordan. Environ Geol 40:1440–1446

    Article  CAS  Google Scholar 

  13. King C-Y, Zhang W, King B-S (1993) Radon anomalies on three kinds of faults in California. Pure Appl Geophys 141:111–124

    Article  Google Scholar 

  14. Fytikas M, Lombardi S, Papachristou M et al (1999) Investigation of the 1867 Lesbos (NE Aegean) earthquake fault pattern based on soil-gas geochemical data. Tectonophysics 308:249–261

    Article  Google Scholar 

  15. Sakoda A, Hanamoto K, Ishimori Y et al (2010) First model of the effect of grain size on radon emanation. Appl Radiat Isot 68:1169–1172

    Article  CAS  PubMed  Google Scholar 

  16. Barillon R, Özgümüs A, Chambaudet A (2005) Direct recoil radon emanation from crystalline phases. Influence of moisture content. Geochim Cosmochim Acta 69:2735–2744

    Article  CAS  Google Scholar 

  17. Semkow TM (1990) Recoil-emanation theory applied to radon release from mineral grains. Geochim Cosmochim Acta 54:425–440

    Article  CAS  Google Scholar 

  18. Sasaki T, Gunji Y, Okuda T (2004) Mathematical modeling of radon emanation. J Nucl Sci Technol 41:142–151

    Article  CAS  Google Scholar 

  19. Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60:807–815

    Article  CAS  PubMed  Google Scholar 

  20. Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl Radiat Isot 69:1422–1435

    Article  CAS  PubMed  Google Scholar 

  21. Breitner D, Arvela H, Hellmuth KH, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions—a pilot study on granitic esker sand sample. J Environ Radioact 101:1002–1006

    Article  CAS  PubMed  Google Scholar 

  22. Chitra N, Danalakshmi B, Supriya D et al (2017) Study of Radon and Thoron exhalation from soil samples of different grain sizes. Appl Radiat Isot 133:75–80

    Article  CAS  PubMed  Google Scholar 

  23. Khoury HN (2014) Importance of clay minerals in jordan case study: Volkonskoite as a sink for hazardous elements of a high pH plume. Jordan J Earth Environ Sci 6:1–10

    Google Scholar 

  24. Abzalov MZ, van der Heyden A, Saymeh A, Abuqudaira M (2015) Geology and metallogeny of Jordanian uranium deposits. Appl Earth Sci 124:63–77

    Article  CAS  Google Scholar 

  25. Barjous M (1986) The geology of Siwaqa. Bull 4. Natural Resources Authority, Amman, Jordan

  26. Jaser D (1986) The geology of Khan Ez Zabib. Bull 3. Natural Resources Authority, Amman, Jordan

Download references

Acknowledgements

This work was supported by the applied scientific research award offered by JOSCO and Engicon companies in Jordan. The authors wish to thank Dr. Samer Kahook (Director General of JUMCO) and Dr. Ma’mon Makahleh (Director of the Research Directorate at JAEC) for their great support throughout this work. The authors also wish to thank the entire JUMCO technical team for their support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alsabbagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsabbagh, A., Alzghoul, S., Marashdeh, S. et al. Examination of fault zones and uranium concentration effects on the in-soil radon levels at Central Jordan Area. J Radioanal Nucl Chem 317, 511–517 (2018). https://doi.org/10.1007/s10967-018-5868-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5868-3

Keywords

Navigation