Skip to main content
Log in

Preparation and biodistribution of 131I-labeled graphene quantum dots

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the superiority of graphene quantum dots (GQDs) in bioimaging and drug delivery carrier, GQDs bring new opportunities for theranostics of diseases. In this study, GQDs were successfully prepared and labeled with 131I. The in vitro properties, biodistribution and SPECT imaging of 131I-GQDs were investigated. The uptake of 131I-GQDs at tumor sites can be clearly observed via SPECT imaging and T/B and T/M ratios increase with increasing time, which can contribute to enhanced permeability and retention (EPR) effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schroeder KL, Goreham RV, Nann T (2016) Graphene quantum dots for theranostics and bioimaging. Pharm Res 33:2337–2357

    Article  CAS  Google Scholar 

  2. Teradal NL, Jelinek R (2017) Carbon nanomaterials in biological studies and biomedicine. Adv Healthc Mater. https://doi.org/10.1002/adhm.201700574

    Google Scholar 

  3. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  Google Scholar 

  4. Chen ML, He YJ, Chen XW, Wang JH (2013) Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjugate Chem 24:387–397

    Article  CAS  Google Scholar 

  5. Iannazzo D, Pistone A, Salamo M, Galvagno S, Romeo R, Giofre SV, Branca C, Visalli G, Pietro Di A (2017) Graphene quantum dots for cancer targeted drug delivery. Int J Pharm 518:185–192

    Article  CAS  Google Scholar 

  6. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun (Camb) 48:3686–3699

    Article  CAS  Google Scholar 

  7. Nurunnabi M, Khatun Z, Nafiujjaman M, Lee DG, Lee YK (2013) Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Appl Mater Interfaces 5:8246–8253

    Article  CAS  Google Scholar 

  8. Qian J, Wang D, Cai FH, Xi W, Peng L, Zhu ZF, He H, Hu ML, He S (2012) Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angew Chem Int Ed Engl 51:10570–10575

    Article  CAS  Google Scholar 

  9. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854

    Article  CAS  Google Scholar 

  10. Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164:138–144

    Article  CAS  Google Scholar 

  11. Maeda H, Matsumura Y (2011) EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev 63:129–130

    Article  CAS  Google Scholar 

  12. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    Article  CAS  Google Scholar 

  13. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  14. Özdemir D, Ünak P (1994) Study on labeling conditions of 125I-synkavit by the iodogen method. J Radioanal Nucl Chem Lett 187:277–283

    Article  Google Scholar 

  15. Song H, Luo SZ, Wei HY, Song HT, Yang YQ, Zhao WW (2010) In vivo biological behavior of 99mTc(CO)3 labeled fullerol. J Radioanal Nucl Chem Lett 285:635–639

    Article  CAS  Google Scholar 

  16. Soman G, Yang XY, Jiang HG, Giardina S, Vyas V, Mitra G, Yovandich J, Creekmore SP, Waldmann TA, Quiñones O, Alvord WG (2009) MTS dye based colorimetric CTLL-2 cell proliferation assay for product release and stability monitoring of Interleukin-15: assay qualification, standardization and statistical analysis. J Immunol Methods 348:83–94

    Article  CAS  Google Scholar 

  17. Jia ZY, Deng HF, Pu MF, Luo SZ (2008) Rhenium-188 labeled meso-tetrakis[3,4-bis (carboxymethyleneoxy) phenyl] porphyrin for targeted radiotherapy: preliminary biological evaluation in mice. Eur J Nucl Med Mol Imaging 35:734–742

    Article  CAS  Google Scholar 

  18. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (NSFC-21471138, NSFC-21401176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunzhong Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Wang, Y., Wang, J. et al. Preparation and biodistribution of 131I-labeled graphene quantum dots. J Radioanal Nucl Chem 316, 685–690 (2018). https://doi.org/10.1007/s10967-018-5804-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5804-6

Keywords

Navigation