Skip to main content
Log in

Distribution of benzo-substituted crown-ethers between chloroform and water: effects of macrocycle ring size and lithium chloride

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Small size benzo-substituted crown ethers are attractive complexing agents for lithium isotope separation by solvent extraction. Low transfer of the crown ethers from solvent to water is a key point for applicability of the extractants. In the present study, 9- and 12-membered crown ethers were synthesized, and their distribution between chloroform and water was studied. Polyether ring size, benzene substituents and addition of LiCl to water were found to effect on distribution constants. Low losses of the macrocycles were observed at single-stage contact with aqueous phase. However, these losses should be taken into account in the design of multistage processes for the preparation of highly enriched lithium isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Torrejos REC, Nisola GM, Song HS, Limjuco LA, Lawagon CP, Parohinog KJ, Koo S, Han JW, Chung W-J (2017) Design of lithium selective crown ethers: synthesis, extraction and theoretical binding studies. Chem Eng J 326:921–933. https://doi.org/10.1016/j.cej.2017.06.005

    Article  CAS  Google Scholar 

  2. Torrejos REC, Nisola GM, Park MJ, Beltran AB, Seo JG, Lee S-P, Chung W-J (2015) Liquid–liquid extraction of Li+ using mixed ion carrier system at room temperature ionic liquid. Desalin Water Treat 53:2774–2786. https://doi.org/10.1080/19443994.2014.931534

    Article  CAS  Google Scholar 

  3. Kimura K, Shono T (1990) In: Inoue Y, Gokel GW (eds) Cation binding by macrocycles: complexation of cationic species by crown ethers. Marcel Dekker INC, New York

    Google Scholar 

  4. Nishizawa K, Ishino S-I, Watanabe H, Shinagawa M (1984) Lithium isotope separation by liquid-liquid extraction using benzo-15-crown-5. J Nucl Sci Tech 21:694–701. https://doi.org/10.3327/jnst.21.694

    Article  CAS  Google Scholar 

  5. Xiao J, Jia Y, Shi C, Wang X, Wang S, Yao Y, Jing Y (2017) Lithium isotopes separation by using benzo-15-crown-5 in eco-friendly extraction system. J Mol Liq 241:946–951. https://doi.org/10.1016/j.molliq.2017.06.119

    Article  CAS  Google Scholar 

  6. Li XS, Wei GY, Ouyang XP, Liao YF, Song G, Jiang WG, Bao M, Xie F (2014) Determination of tritium in Li–Pb alloy irradiated by thermal neutrons with quantitatively analyzing the byproduct 4He. J Radioanal Nucl Chem 299:733–740. https://doi.org/10.1007/s10967-013-2804-4

    Article  CAS  Google Scholar 

  7. Ferguson JP, Arcis H, Zimmerman GH, Tremaine PR (2017) Ion-pair formation constants of lithium borate and lithium hydroxide under pressurized water nuclear reactor coolant conditions. Ind Eng Chem Res 56:8121–8132. https://doi.org/10.1021/acs.iecr.7b01015

    Article  CAS  Google Scholar 

  8. Gheribi AE, Corradini D, Dewan L, Chartrand P, Simon C, Madden PA, Salanne M (2014) Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles. Mol Phys 112:1305–1312. https://doi.org/10.1080/00268976.2014.897396

    Article  CAS  Google Scholar 

  9. Symons EA (1985) Lithium isotope separation: a review of possible techniques. Sep Sci Technol 20(9–10):633–651. https://doi.org/10.1080/01496398508060696

    Article  CAS  Google Scholar 

  10. Nishizawa K, Takano T, Ikeda I, Okahara M (1988) Extractive separation of lithium isotopes by crown ethers. Sep Sci Technol 23:333–345. https://doi.org/10.1080/01496398808060708

    Article  CAS  Google Scholar 

  11. Nishizawa K, Takano T (1988) Extractive separation of lithium isotopes using benzo-15-crown-5. Effect of salt concentration. Sep Sci Technol 23:751–757. https://doi.org/10.1080/01496398808057664

    Article  Google Scholar 

  12. Demin SV, Zhilov VI, Tsivadze AYu (2015) Lithium and boron isotope effects in extraction systems. Russ J Inorg Chem 60:633–637. https://doi.org/10.1134/S0036023615050046

    Article  CAS  Google Scholar 

  13. Shokurova NA, Demina LI, Zhilov VI, Demin SV, Tsivadze AYu (2016) Study of isotope effect upon lithium iodide complexation with benzo-15-crown-5 in water–chloroform extraction system. Rus J Inorg Chem 61:787–790. https://doi.org/10.1134/S0036023616060176

    Article  CAS  Google Scholar 

  14. Xiao J, Jia Y, Shi C, Wang X, Yao Y, Jing Y (2016) Liquid-liquid extraction separation of lithium isotopes by using room-temperature ionic liquids-chloroform mixed solvent system contained benzo-15-crown-5. J Mol Liq 223:1032–1038. https://doi.org/10.1016/j.molliq.2016.08.078

    Article  CAS  Google Scholar 

  15. Nesterov SV (2000) Crown ethers in radiochemistry. Advances and prospects. Rus Chem Rev 69:769–782. https://doi.org/10.1070/RC2000v069n09ABEH000586

    Article  CAS  Google Scholar 

  16. Zakurdaeva OA, Nesterov SV (2015) Improved extraction-spectrophotometric method for determination of dicyclohexano-substituted crown ethers in aqueous solutions. J Radioanal Nucl Chem 303:1737–1744. https://doi.org/10.1007/s10967-014-3799-1

    CAS  Google Scholar 

  17. Gadzekpo VPY, Christian GD (1983) 1,4,7,10-Tetraoxacyclododecane(12-crown-4) as neutral carrier for lithium ion in lithium ion selective electrode. Anal Lett 16(17–18):1371–1380. https://doi.org/10.1080/00032718308065251

    Article  CAS  Google Scholar 

  18. El-Azhary AA, Al-Kahtani AA (2005) Conformational study of the structure of 12-crown-4-alkali metal cation complexes. J Phys Chem A 109:8041–8048. https://doi.org/10.1021/jp052605t

    Article  CAS  Google Scholar 

  19. Dea S, Alia SM, Shenoia MRK, Ghosha SK, Maity DK (2009) Conformational effect on the preferential binding of alkali metal cation with crown ether: a molecular level investigation. Desalin Water Treat 12:93–99. https://doi.org/10.5004/dwt.2009.947

    Article  Google Scholar 

  20. Steed JW (2001) First- and second-sphere coordination chemistry of alkali metal crown ether complexes. Coord Chem Rev 215:171–221. https://doi.org/10.1016/S0010-8545(01)00317-4

    Article  CAS  Google Scholar 

  21. Bartsch R, Ramesh V, Bach RO, Shono T, Kimura K (1995) In: Sapse A-M, von R Schleyer P (eds) Lithium chemistry: a theoretical and experimental overview. Wiley, New York

  22. Boda A, Ali Sk M, Rao H, Ghosh SK (2012) Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction. J Mol Model 18:3507–3522. https://doi.org/10.1007/s00894-011-1348-1

    Article  CAS  Google Scholar 

  23. Robak W, Apostoluk W, Maciejewski P (2006) Analysis of liquid–liquid distribution constants of nonionizable crown ethers and their derivatives. Anal Chim Acta 569:119–131. https://doi.org/10.1016/j.aca.2006.03.098

    Article  CAS  Google Scholar 

  24. Buchanan GW, Driega AB, Moghimi A, Bensimon C, Bourque K (1993) Cis-Cyclohexano-9-crown-3 ether. Solid state and low-temperature solution stereochemistry as determined by X-ray crystallography and nuclear magnetic resonance spectroscopy. Can J Chem 71:951–959. https://doi.org/10.1139/v93-127

    Article  CAS  Google Scholar 

  25. Simonov YA, Dvorkin AA, Fonari MS, Malinowski TI, Luboch E, Cygan A, Biernat JF, Ganin EV, Popkov YA (1993) Twelve-membered crown ethers: crystal structures of benzo- 12-crown-4 and naphtho- 12-crown-4. J Inc Phenom Mol Recogn Chem 15:79–89. https://doi.org/10.1007/BF00706476

    Article  CAS  Google Scholar 

  26. Pedersen CJ (1972) Macrocyclic polyether compounds. US 3,687,978

  27. Takeda Y, Hashimoto K, Yoshiyama D, Katsuta S (2002) Extraction of alkali metal (Li, Na, K) picrates with benzo-15-crown-5 into various organic solvents. Elucidation of fundamental equilibria determining the extraction-ability and selectivity. J Incl Phenom Macrocycl Chem 42:323–331. https://doi.org/10.1023/A:1016042402828

    Article  Google Scholar 

  28. Stolwijk TB, Vos LC, Sudhölter EJR, Reinhoudt DN (1989) Partition coefficients of crown ethers. Recl Trav Chim Pays-Bas 108:103–108. https://doi.org/10.1002/recl.19891080306

    Article  CAS  Google Scholar 

  29. Boda A, Sk Musharaf A, Shenoi MRK (2010) Partition coefficients of macrocyclic crown ethers in water–organic biphasic system: dFT/COSMO-RS approach. Fluid Phase Equilibr 288:111–120. https://doi.org/10.1016/j.fluid.2009.10.026

    Article  CAS  Google Scholar 

  30. Kudo Y, Takeda Y, Matsuda H (1995) On the facilitating effect of neutral macrocyclic ligands on ion transfer across the interface between aqueous and organic solutions II: alkali metal ion complexes with hydrophilic crown ethers. J Electroanal Chem 396:333–338. https://doi.org/10.1016/0022-0728(95)04030-R

    Article  Google Scholar 

  31. Horwitz EP, Dietz ML, Fisher DE (1990) Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-5 and its derivatives. Solv Extr Ion Exch 8:557–572. https://doi.org/10.1080/07366299008918017

    Article  CAS  Google Scholar 

  32. Hasegawa Y, Nakano T, Odori Y, Ishikawa Y (1984) Lithium salt effects on extractions of 15-crown-5, 18-crown-6, or their silver(I) complexes as picrates. Bull Chem Soc Jpn 57:8–11. https://doi.org/10.1246/bcsj.57.8

    Article  CAS  Google Scholar 

  33. Kolthoff IM, Chantooni MK (1997) Crown ether complexed alkali metal picrate ion pairs in water-saturated dichloromethane as studied by electrolytic conductance and by partitioning into water. Effect of lithium chloride on partitioning. J Chem Eng Data 42:49–53. https://doi.org/10.1021/je960276f

    Article  CAS  Google Scholar 

  34. Kolthoff IM (1981) Ionic strength effect on extraction of potassium complexed with crown ether 18-crown-6. Preliminary communication. Can J Chem 59:1548–1551. https://doi.org/10.1139/v81-227

    Article  CAS  Google Scholar 

  35. Long FA, McDevit WF (1952) Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem Rev 51:119–169. https://doi.org/10.1021/cr60158a004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. N.A. Shmakova for performing the IR measurements. The work at Enikolopov Institute of Synthetic Polymer Materials was financially supported by The Federal Agency for Scientific Organizations (FASO Russia) under contract 115060840014, synthesis of the crown ethers was carried out at Topchiev Institute of Petrochemical Synthes within the framework of State Program supported by FASO Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Zakurdaeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10967_2018_5773_MOESM1_ESM.pdf

Procedure of DB12C4 synthesis, NMR spectra of B9C3, B12C4 and DB12C4 (Figures S1–S10), Tables S1 (λmax and ε), Figures S11, S13 (UV–Vis spectra of CE solutions) and Figure S12 (calibration curves). Supplementary material 1 (PDF 1298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakurdaeva, O.A., Asachenko, A.F., Topchiy, M.A. et al. Distribution of benzo-substituted crown-ethers between chloroform and water: effects of macrocycle ring size and lithium chloride. J Radioanal Nucl Chem 316, 535–541 (2018). https://doi.org/10.1007/s10967-018-5773-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5773-9

Keywords

Navigation