Skip to main content
Log in

Measurement of 151Sm in nuclear decommissioning samples by ICP-MS/MS

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

151Sm [half-life 94.7 (6) years] is a fission and activation product that requires accurate measurement as part of nuclear decommissioning. A procedure is outlined for the measurement of 151Sm in spiked graphite samples. Digestion is performed by automated lithium borate fusion, followed by extraction chromatography separation of 151Sm from interfering lanthanide isotopes, primarily europium. Measurement is carried out using tandem inductively coupled plasma mass spectrometry (ICP-MS/MS), using the integrated collision/reaction cell as a rapid support to radiochemical separation of 151Sm from isobaric 151Eu using oxygen as a reactive gas, achieving detection limits below the out-of-scope limit for 151Sm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nuclear Energy Agency (2014) R&D and innovation needs for decommissioning nuclear facilities. https://www.oecd-nea.org/rwm/pubs/2014/7191-rd-innovation-needs.pdf. Accessed 12 Feb 2018

  2. SEC (2011) Seventh situation report on radioactive waste and spent fuel management in the European Union. Commission staff working paper. SEC 1007 final. https://ec.europa.eu/energy/sites/ener/files/documents/seventh_situation_report_corr_version_without_cover_page.pdf. Accessed 12 Feb 2018

  3. LNE-LNHB Table de Radionuléides (2017) http://www.nucleide.org/DDEP_WG/Nuclides/Sm-151_tables.pdf. Accessed 29 Sept 2017

  4. Schwantes JM, Sudowe R, Nitsche H, Hoffman DC (2008) Applications of solvent extraction in the high-yield multi-process reduction/separation of Eu from excess Sm. J Radioanal Nucl Chem 276(2):543–548

    Article  CAS  Google Scholar 

  5. Vio L, Crètier G, Chartier F, Geertsen V, Gourgiotis A, Isnard H, Rocca J-L (2012) Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry. Talanta 99:586–593

    Article  CAS  Google Scholar 

  6. Jerome S (1988) An improved method for the analysis of premethium-147. Sci Total Environ 70:275–298

    Article  CAS  Google Scholar 

  7. Martin JP (1999) The determination of promethium-147 and samarium-151 using extraction chromatography. Spec Publ R Soc Chem 234:201–213

    CAS  Google Scholar 

  8. Pitois A, de Las Heras LA, Betti M (2008) Determination of fission products in nuclear samples by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). Int J Mass Spectrom 270:118–126

    Article  CAS  Google Scholar 

  9. Yoshida M, Sumiya S, Watanabe H, Tobita K (1995) A rapid separation method for determination of promethium-147 and samarium-151 in environmental samples with high performance liquid chromatography. J Radioanal Nucl Chem 197(2):219–227

    Article  CAS  Google Scholar 

  10. Wolf SF, Bowers DL, Cunnane JC (2005) Analysis of high burnup spent nuclear fuel by ICP-MS. J Radioanal Nucl Chem 263(3):581–586

    Article  CAS  Google Scholar 

  11. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 2(11):105–139

    Article  Google Scholar 

  12. Lariviere D, Taylor VF, Evans RD, Cornett RJ (2006) Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry. Spectrochim Acta B 61(8):877–904

    Article  Google Scholar 

  13. Croudace IW, Russell BC, Warwick PE (2017) Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: a review. J Anal Atom Spectrom 32:494–526

    Article  CAS  Google Scholar 

  14. Alonso JG, Sena F, Arbore P, Betti M, Koch L (1995) Determination of fission products and actinides in spent nuclear fuels by isotope dilution ion chromatography inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 10:381–393

    Article  Google Scholar 

  15. Moreno JMB, Alonso JIG, Arbore P, Nicolaou G, Koch L (1996) Characterization of spent nuclear fuels by ion chromatography–inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 11:929–935

    Article  Google Scholar 

  16. Isnard H, Brennetot R, Caussignac C, Caussignac N, Chartier F (2005) Investigations for determination of Gd and Sm isotopic compositions in spent nuclear fuels samples by MC ICPMS. Int J Mass Spectrom 246(1–3):66–73

    Article  CAS  Google Scholar 

  17. Russell B, Garcia Miranda M, Ivanov P (2017) Development of an optimised method for analysis of 90Sr in decommissioning wastes by triple quadrupole inductively coupled plasma mass spectrometry. Appl Radiat Isot 126:35–39

    Article  CAS  Google Scholar 

  18. Amr AA, Helal A-FI, Al-Kinani AT, Balakrishnan P (2016) Ultra-trace determination of 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu by triple quadruple collision/reaction cell-ICP-MS/MS: establishing a baseline for global fallout in Qatar soil and sediments. J Environ Radioact 153:73–87

    Article  CAS  Google Scholar 

  19. Shikamori Y, Nakano K, Sugiyama N, Kakuta S (2012) The ultratrace determination of iodine 129 using the Agilent 8800 Triple Quadrupole ICP-MS in MS/MS mode. https://www.agilent.com/cs/library/applications/5991-0321EN_AppNote_8800_I.pdf. Accessed 29 Sept 2017

  20. Zheng J, Tagami K, Bu W, Uchida S, Watanabe Y, Kubota Y, Fuma S, Ihara S (2014) 135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ Sci Technol 48(10):5433–5438

    Article  CAS  Google Scholar 

  21. Van Es EM, Russell BC, Ivanov P, Read D (2017) Development of a method for rapid analysis of Ra-226 in groundwater and discharge water samples by ICP-MS/MS. Appl Radiat Isot 126:31–34

    Article  Google Scholar 

  22. Tanimizu M, Sugiyama N, Ponzevera E, Bayon G (2013) Determination of ultra-low 236U/238U isotope ratios by tandem quadrupole ICP-MS/MS. J Anal Atom Spectrom 28:1372–1376

    Article  CAS  Google Scholar 

  23. Triple Quadrupole ICP-MS (2017) http://www.agilent.com/en/products/icp-ms/icp-ms-systems/8800-triple-quadrupole-icp-ms. Accessed 29 Sept 2017

  24. Progress in Radioactive Graphite Waste Management, IAEA-TECDOC-1647 (2017) http://www-pub.iaea.org/MTCD/publications/PDF/te_1647_web.pdf. Accessed 29 Sept 2017

  25. Pearce A (2001) CIEMAT/NIST—what is it? LS Users Forum 2001. http://www.npl.co.uk/upload/pdf/20010905_lsuf_pearce2_1.pdf. Accessed 29 Sept 2017

  26. Suran J, Kovar P, Smoldasova J, Solc J, Van Ammel R, Garcia Miranda M, Russell B, Arnold D, Zapata Garcia D, Boden S, Rogiers B, Sand J, Peräjärvi K, Holm P, Hay B, Failleau G, Plumeri S, Beck YS, Grisa T (2017) Metrology for decommissioning nuclear facilities: partial outcomes of joint research project within the European Metrology Research Program. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2017.08.032

    Google Scholar 

  27. Croudace IW, Warwick PE, Taylor R, Dee S (1998) Rapid procedure for plutonium and uranium determination in soils using a borate fusion followed by ion-exchange and extraction chromatography. Anal Chim Acta 371(2–3):217–225

    Article  CAS  Google Scholar 

  28. Triskem Ln resin product guide (2018) http://www.triskem-international.com/iso_album/tki_1_binder_en.pdf. Accessed 14 Feb 2018

  29. Agilent Technical Note (2017) Reaction data for 70 elements using O2, NH3 and H2 gases with the Agilent 8800 Triple Quadrupole ICP-MS. http://www.agilent.com/cs/library/technicaloverviews/public/5991-4585EN_TechNote8800_ICP-QQQ_reactiondata.pdf. Accessed 29 Sept 2017

  30. Agilent O2 Technical Note (2017) Agilent 8800 Triple Quadrupole ICP-MS: understanding oxygen reaction mode in ICP-MS/MS. http://www.agilent.com/cs/library/technicaloverviews/public/5991-1708EN_TechOverview_ICP-MS_8800_ORS_mode.pdf. Accessed 29 Sept 2017

  31. IAEA Safety Standard Series No. RS-G-1.7. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1202_web.pdf. Accessed 12 Feb 2018

  32. Bolea-Fernandez E, Balcaen L, Resano M, Vanhaecke F (2016) Tandem ICP-mass spectrometry for Sr isotopic analysis without prior Rb/Sr separation. J Anal Atom Spectrom 31:303–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the European Metrology Research Program (EMRP) joint research project “Metrology for Decommissioning Nuclear Facilities” (MetroDecom). The European Metrology Research Programme (EMRP) is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, M.G., Russell, B. & Ivanov, P. Measurement of 151Sm in nuclear decommissioning samples by ICP-MS/MS. J Radioanal Nucl Chem 316, 831–838 (2018). https://doi.org/10.1007/s10967-018-5764-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5764-x

Keywords

Navigation