Skip to main content
Log in

Synthesis and evaluation of triphenylphosphonium conjugated 18F-labeled silica nanoparticles for PET imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Accumulation of triphenylphosphonium (TPP) is normally observed in the mitochondria from the extracellular spaces due to the high difference in plasma membrane potential of the mitochondria. In the cancer cells, the mitochondrial membrane potential gap is higher as compared to that of normal cells resulting in elevated uptake of TPP. Silica nanoparticles (SNPs) being widely developed and used for biomedical applications, in this study, we tried to modify the surface of SNPs with varying amounts of TPP to verify their possible application as a positron emission tomography (PET) agent. The studies confirmed that the high level of TPP loading on the surface of SNPs possess higher positive charge (+ 31.5 mV). Owing to this behavior of plasma membrane potential of cancerous cells the uptake of positively charged SNPs was much higher in tumor cells than that of normal cells which was confirmed by PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  PubMed  Google Scholar 

  2. Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorgan Med Chem 17:2950–2962

    Article  CAS  Google Scholar 

  3. Zhang C, An T, Wang D, Wan G, Zhang M, Wang H, Zhang S, Li R, Yang X, Wang Y (2016) Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly (β-amino ester)/poly (lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release 226:193–204

    Article  CAS  PubMed  Google Scholar 

  4. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nanotechnology 2:751–760

    CAS  Google Scholar 

  5. Kim J, Cao L, Shvartsman D, Silva EA, Mooney DJ (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11:694

    Article  CAS  PubMed  Google Scholar 

  6. Kim K-R, Kim HY, Lee Y-D, Ha JS, Kang JH, Jeong H, Bang D, Ko YT, Kim S, Lee H (2016) Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Release 243:121–131

    Article  CAS  PubMed  Google Scholar 

  7. Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ (2006) Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharm 1:340–350

    Article  Google Scholar 

  8. Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8:290–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee SB, Kim HL, Jeong HJ, Lim ST, Sohn MH, Kim DW (2013) Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew Chem Int Edit 52:10549–10552

    Article  CAS  Google Scholar 

  10. Lee H, Sung D, Kim J, Kim B-T, Wang T, An SSA, Seo S-W, Yi DK (2015) Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution. Int J Nanomed 10:215

    Article  CAS  Google Scholar 

  11. Keinänen O, Mäkilä EM, Lindgren R, Virtanen H, Liljenbäck H, Oikonen V, Sarparanta M, Molthoff C, Windhorst AD, Roivainen A (2017) Pretargeted PET imaging of trans-cyclooctene-modified porous silicon nanoparticles. ACS Omega 2:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, Sofocleous CT, Meester RJ, Wiesner U, Patel S (2013) Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol 5:74–86

    Article  CAS  Google Scholar 

  14. Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    Article  CAS  PubMed  Google Scholar 

  15. Marrache S, Pathak RK, Dhar S (2014) Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci 111:10444–10449

    Article  CAS  PubMed  Google Scholar 

  16. Kwon HJ, Cha M-Y, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I (2016) Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano 10:2860–2870

    Article  CAS  PubMed  Google Scholar 

  17. Zhang XY, Zhang P-Y (2016) Mitochondria targeting nano agents in cancer therapeutics. Oncol Lett 12:4887–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci 100:5407–5412

    Article  CAS  PubMed  Google Scholar 

  19. Frantz MC, Wipf P (2010) Mitochondria as a target in treatment. Environ Mol Mutagen 51:462–475

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gruber J, Fong S, Chen C-B, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31:563–592

    Article  CAS  PubMed  Google Scholar 

  21. Davis S, Weiss M, Wong J, Lampidis TJ, Chen LB (1985) Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Bio Chem 260:13844–13850

    CAS  Google Scholar 

  22. Dairkee SH, Hackett AJ (1991) Differential retention of rhodamine 123 by breast carcinoma and normal human mammary tissue. Breast Cancer Res Treat 18:57–61

    Article  CAS  PubMed  Google Scholar 

  23. Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49:63–70

    Article  CAS  PubMed  Google Scholar 

  24. Sarparanta M, Mäkilä E, Heikkilä T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8:1799–1806

    Article  CAS  PubMed  Google Scholar 

  25. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62–69

    Article  Google Scholar 

  26. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater. https://doi.org/10.1155/2012/132424

    Article  Google Scholar 

  27. Sato-Berrú R, Saniger JM, Flores-Flores J, Sanchez-Espíndola M (2013) Simple method for the controlled growth of SiO2 spheres. J Mat Sci Eng A 3:237–242

    Google Scholar 

  28. Bhatt NB, Pandya DN, Jide XuJ, Tatum D, Magda D, Wadas TJ (2017) Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89. PLoS ONE 12:1–13

    Google Scholar 

Download references

Acknowledgements

Our study was supported by the Nuclear R&D Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2015M2A2A4A02043265 and 2016M2C2A1937989).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.G., Lee, J.Y., Choi, P.S. et al. Synthesis and evaluation of triphenylphosphonium conjugated 18F-labeled silica nanoparticles for PET imaging. J Radioanal Nucl Chem 316, 1099–1106 (2018). https://doi.org/10.1007/s10967-018-5763-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5763-y

Keywords

Navigation