Skip to main content
Log in

An ion chromatographic separation method for the sequential determination of 90Sr, 241Am and Pu isotopes in a urine sample

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A radiobioassay method has been developed for the sequential determination of 90Sr, 241Am and Pu isotopes in a urine sample. Unlike the existing methods using multiple extraction chromatographic cartridges, this work demonstrates an application of an automated ion chromatographic (IC) system for the separation of these radionuclides on a single IC column. The method meets the bioassay performance criteria for relative bias and relative precision as recommended by ANSI/HPS N13.30-2011. The detection limits for the radionuclides are found to be satisfactory for medical intervention in case of an accidental exposure scenario. Sample preparation time is less than 11 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. U.S. Centers for Disease Control and Prevention (2014) Population monitoring in radiation emergencies: a guide for state and local public health planners, 2nd edn. https://emergency.cdc.gov/radiation/pdf/population-monitoring-guide.pdf. Accessed 16 Nov 2017

  2. Dai X, Kramer-Tremblay S (2014) Five-column chromatography for simultaneous determination of hard-to-detect radionuclides in water and swipe samples. Anal Chem 86:5441–5447

    Article  CAS  Google Scholar 

  3. Dai X, Kramer-Tremblay S (2011) An emergency bioassay method for actinides in urine. Health Phys 101:144–147

    Article  CAS  Google Scholar 

  4. Maxwell SL, Culligan BK, Jones VD, Nichols ST, Noyes GW, Bernard MA (2011) Rapid determination of 237Np and plutonium isotopes in urine by inductively coupled plasma mass spectrometry and alpha spectrometry. Health Phys 101:180–186

    Article  CAS  Google Scholar 

  5. Maxwell SL, Culligan BK (2009) Rapid separation method for emergency water and urine samples. J Radioanal Nucl Chem 279:901–907

    Article  CAS  Google Scholar 

  6. Maxwell SL (2008) Rapid analysis of emergency urine and water samples. J Radioanal Nucl Chem 275:497–502

    Article  CAS  Google Scholar 

  7. Maxwell SL, Jones VD (2009) Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry. Talanta 80:143–150

    Article  CAS  Google Scholar 

  8. McAlister DR, Hotwitz EP, Harvery JT (2011) Rapid methods for the isolation of actinides, Sr, Tc, and Po from raw urine. Health Phys 101:176–179

    Article  CAS  Google Scholar 

  9. Maxwell SL, Culligan BK (2011) New column separation method for emergency urine samples. J Radioanal Nucl Chem 279:105–111

    Article  Google Scholar 

  10. Wang JJ, Chen IJ, Chiu JH (2004) Sequential isotopic determination of plutonium, thorium, americium, strontium and uranium in environmental and and bioassay samples. Appl Radiat Isotopes 61:299–305

    Article  CAS  Google Scholar 

  11. Dulanska S, Bilohuscin J, Remenec B, Galanda D, Matel LJ (2015) Determination of 239Pu, 241Am and 90Sr in urine using pre-filter material and combined sorbent AnaLig® Pu-02, AnaLig® Sr-01, DGA Resin. J Radioanal Nucl Chem 304:127–132

    Article  CAS  Google Scholar 

  12. Sierra I, Hernandez C (2016) Development of a rapid procedure to analyse Pu, Am, and 90Sr in emergency urine bioassay in CIEMAT Bioelimination Laboratory: method validation by emergency bioassay intercomparison exercises. Radiat Prot Dosim 170:237–241

    Article  CAS  Google Scholar 

  13. St-Amant N, Whyte JC, Rousseau ME, Lariviere D, Ungar RK, Johnson S (2011) Appl Radiat Isotopes 69:8–17

    Article  CAS  Google Scholar 

  14. Sadi BB, Fontain A, McAlister D, Li C (2015) Emergency radiobioassay method for determination of 90Sr and 226Ra in a spot urine sample. Anal Chem 87:7931–7937

    Article  CAS  Google Scholar 

  15. Lazare L, Crestey C, Bleistein CJ (2009) Measurement of 90Sr in primary coolant of pressurised water reactor. J Radioanal Nucl Chem 279:633–638

    Article  CAS  Google Scholar 

  16. Cobb J, Warwick P, Carpenter RC, Morrison RT (1994) Determination of 90Sr in water and urine samples using ion chromatography. Analyst 119:1759–1764

    Article  CAS  Google Scholar 

  17. Reboul SH, Fjeld RA (1995) Potential effects of surface water components on actinide determinations conducted by ion chromatography. Health Phys 68:585–589

    Article  CAS  Google Scholar 

  18. Reboul SH, Borai EH, Fjeld RA (2002) Sequential separation of actinides by ion chromatography coupled with on-line scintillation detection. Anal Bioanal Chem 374:1096–1100

    Article  CAS  Google Scholar 

  19. Fjeld RA, DeVol TA, Leyba JD, Paulenova AJ (2005) Measurement of radionuclides using ion chromatography and on-line radiation detection. J Radioanal Nucl Chem 263:635–640

    Article  CAS  Google Scholar 

  20. Betti MJ (1997) Use of ion chromatography for the determination of fission products and actinides in nuclear applications. J Chromatogr A 789:369–379

    Article  CAS  Google Scholar 

  21. Jernstrom J, Lehto J, Betti MJ (2007) On-line separation of Pu(III) and Am(III) using extraction and ion chromatography. J Radioanal Nucl Chem 274:95–102

    Article  Google Scholar 

  22. Mahan C, Zhu L, Gonzales EJ (2005) Evaluation of chelation concentration and cation separation of actinides at ultra-trace levels in urine matrix. J Radioanal Nucl Chem 263:467–475

    Article  Google Scholar 

  23. Perna L, Bocci F, Aldave de las Heras L, De Pablo J, Betti MJ (2002) Studies on simultaneous separation and determination of lanthanides and actinides by ion chromatography inductively coupled plasma mass spectrometry combined with isotope dilution mass spectrometry. J Anal At Spectrom 17:1166–1171

    Article  CAS  Google Scholar 

  24. Roellin S, Eklund UB, Spahiu K (2001) Separation of actinide redox species with cation exchange chromatography and its application to the analysis of nuclear spent fuel leaching solutions. Radiochim Acta 89:757–763

    Google Scholar 

  25. Truscott JB, Jones P, Fairman BE, Evans EHJ (2001) Determination of actinides in environmental and biological samples using high performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry. J Chromatogr A 928:91–98

    Article  CAS  Google Scholar 

  26. Solatie D, Carbol P, Betti M, Bocci F, Hiernaut T, Rondinella VV, Cobos J (2000) Ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS) and radiometric techniques for the determination of actinides in aqueous leachate solution from uranium oxide. Fresenius J Anal Chem 368:88–94

    Article  CAS  Google Scholar 

  27. Moreno JMB, Betti M, Alonso JIG (1997) Determination of neptunium and plutonium in presence of high concentration of uranium by ion chromatography—inductively coupled plasma mass spectrometry. J Anal At Spectrom 12:355–361

    Article  Google Scholar 

  28. Alonso JIG, Sena F, Arbore P, Betti M, Koch L (1995) Determination of fission products and actinides in spent nuclear fuels by isotope dilution ion chromatography inductively coupled plasma mass spectrometry. J Anal At Spectrom 10:381–393

    Article  Google Scholar 

  29. Eichrom Technologies, Inc. (2004) Cerium fluoride microprecipitation for alpha spectrometry source preparation of actinides. Analytical Procedures, SPA01, Rev. 1.1. 2004. http://www.eichrom.com/docs/methods/pdf/spa01-11_cef3_act.pdf. Accessed 16 Nov 2017

  30. International Organisation for Standardisation (2010) Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation—fundamentals and application. ISO 11929:2010 (Geneva: ISO)

  31. Dionex document 031188-06, Product Manual, IonPac® CS5A 2002. https://tools.thermofisher.com/content/sfs/manuals/4342-31188-06_CS5A_V17.pdf. Accessed 16 Nov 2017

  32. Dionex document 032558-05, Product Manual, IonPac® CS5, 2002. http://tools.thermofisher.com/content/sfs/manuals/4396-32558-05_CS5_V17.pdf. Accessed 16 Nov 2017

  33. Dionex document 034255-06. Product Manual, IonPac® Trace Metal Concentrator (TMC-1) Column, 2004. https://tools.thermofisher.com/content/sfs/manuals/4431-34255-06_TMC1_V23.pdf. Accessed 16 Nov 2017

  34. Grahek Z, Eskinja I, Cerjan S, Kvastek K, Lulic S (1994) Separation of strontium from calcium by means of anion exchanger and alcoholic solution of nitric acid. J Radioanal Nucl Chem 182:401–413

    Article  CAS  Google Scholar 

  35. Grahek Z, Lulic S, Kosutic K, Eskinja I, Cerjan S, Kvastek K (1995) Separation of radioactive strontium from natural samples by means of mixed-solvent anion exchange. J Radioanal Nucl Chem 189:141–146

    Article  CAS  Google Scholar 

  36. Grahek Z, Kosutic K, Lulic S (1999) Improved method for the separation of radioactive strontium from various samples by mixed solvent anion exchange. J Radioanal Nucl Chem 242:33–40

    Article  CAS  Google Scholar 

  37. Grahek Z, Eskinja I, Kosutic K, Lulic S, Kvastek K (1999) Isolation of radioactive strontium from natural samples: separation of alkaline and alkaline earth elements by means of mixed solvent anion exchange. Anal Chim Acta 379:107–119

    Article  CAS  Google Scholar 

  38. Grahek Z, Karanovic G, Nodilo M (2012) Rapid determination of 89,90Sr in wide range of activity concentration by combination of yttrium, strontium separation and Cherenkov counting. J Radioanal Nucl Chem 292:555–569

    Article  CAS  Google Scholar 

  39. Grahek Z, Nodilo M (2012) Continuous separation of Sr, Y and some actinides by mixed solvent anion exchange and determination of 89,90Sr, 238,239Pu and 241Am in soil and vegetation samples. J Radioanal Nucl Chem 293:815–827

    Article  CAS  Google Scholar 

  40. National Council in Radiation Protection and Measurements (NCRP) (2008) Management of persons contaminated with radionuclides. NCRP Report 161, 2008

  41. U.S. Department of Health and Human Services. Radiological dispersal device playbook. http://www.phe.gov/Preparedness/planning/playbooks/rdd/Pages/default.aspx. Accessed 16 Nov 2017

  42. American National Standard Institute (ANSI)/Health Physics Society (HPS), Performance criteria for radiobioassay. Health Physics Society, McLean, VA. ANSI/HPS N 13.30-2011

  43. Li C, Bartize C, Battisti P, Bottger A, Bouvier C, Capote-Cuellar A, Carr Z, Hammond D, Hartmann M, Heikkinen T, Reyes EH, Jones RL, Kim E, Ko R, Koga R, Kukhta B, Mitchell L, Morhard R, Paquet F, Quayle D, Rulik P, Sadi B, Sergei A, Sierra I, Sousa WO, Szabo G (2017) GHSI emergency radionuclide bioassay laboratory network—summary of the second exercise. Radiat Prot Dosim 174:449–456

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. Anthony DiNardo of the Bioassay Division of the Radiation Protection Bureau (RPB) for collecting the human urine samples from the healthy adult donors from RPB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki B. Sadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadi, B.B., Rinaldo, C., Spencer, N. et al. An ion chromatographic separation method for the sequential determination of 90Sr, 241Am and Pu isotopes in a urine sample. J Radioanal Nucl Chem 316, 179–189 (2018). https://doi.org/10.1007/s10967-018-5758-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5758-8

Keywords

Navigation