Skip to main content
Log in

Characterization of a new gel based on alanine–ninhydrin for possible use in radiation dosimetry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ninhydrin reacts with alanine forming a Ruhemann’s purple (RP) compound. RP and chloral hydrate (CH) were introduced into gelatin to form a tissue equivalent RP gel for radiation dose measurements, 5–450 Gy. The gel color fades proportionally with the absorbed dose. Addition of CH to the gel improved its radiation sensitivity and fading. RP was analyzed by FTIR spectrometer and the gel by UV–Vis spectrophotometer at 404 and 572 nm. Dose–response is nearly temperature independent from 22 to 30 °C but it is a time dependent after irradiation. Uncertainty (2σ) in dose estimation is less than 6.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sigma-Aldrich website (2016) (http://www.sigmaaldrich.com/catalog/product/sial/151173?lang=en&region=EG)

  2. Ruhemann S (1910) Cyclic di- and tri-ketones. Trans Chem Soc 97:1438–1449

    Article  CAS  Google Scholar 

  3. Friedman M (2004) Applications of the ninhydrin reaction for analysis of amino Acids, peptides, and proteins to agricultural and biomedical sciences. J Agric Food Chem 52:385–406

    Article  CAS  Google Scholar 

  4. McCaldin DJ (1960) The chemistry of ninhydrin. Chem Revs 60:39–51

    Article  CAS  Google Scholar 

  5. Bottom CB, Hanna SS, Siehr DJ (1978) Mechanism of the ninhydrin reaction. Biochem Educ 6:4–5

    Article  CAS  Google Scholar 

  6. Wilkinson D (2000) Study of the reaction mechanism of 1,8-diazafluoren-9-one with the amino acid, L-alanine. Forensic Sci Int 109:87–103

    Article  CAS  Google Scholar 

  7. Derebe MG, Raju VJT, Retta N (2002) Synthesis and characterization of some metal complexes of a Schiff base derived from ninhydrin and L-alanine. Bull Chem Soc Ethiop 16:53–64

    Article  CAS  Google Scholar 

  8. Regulla DF, Deffner U (1982) Dosimetry by ESR spectroscopy of alanine. Appl Radiat Isot 33:1101–1114

    Article  CAS  Google Scholar 

  9. Yordanov ND, Gancheva V (1999) Selfcalibrated alanine/EPR dosimeters: a new generation of solid state/EPR dosimeters. J Radioanal Nucl Chem 240:215–217

    Article  CAS  Google Scholar 

  10. Nette HP, Onori S, Fattibene P, Regulla DF, Wieser A (1993) Coordinated research efforts for establishing an international radiotherapy dose intercomparison service based on the alanine/ESR system. Appl Radiat Isot 44:7–12

    Article  CAS  Google Scholar 

  11. Babic S, Battista J, Jordan K (2009) Radiochromic leuco dye micelle hydrogels: iI. Low diffusion rate leuco crystal violet gel. Phys Med Biol 54:6791–6808

    Article  CAS  Google Scholar 

  12. Hiroki A, Sato Y, Nagasawa N, Ohta A, Seito H, Yamabayashi H, Yamamoto T, Taguchi M, Tamada M, Kojima T (2013) Preparation of polymer gel dosimeters based on less toxic monomers and gellan gum. Phys Med Biol 58:7131–7141

    Article  CAS  Google Scholar 

  13. Davies JB, Baldock C (2008) Sensitivity and stability of the Fricke-gelatin xylenol orange gel dosimeter. Radiat Phys Chem 77:690–696

    Article  CAS  Google Scholar 

  14. Pirani LF, De Oliveira LN, Petchevist PCD, Moreira MV, Ila D, De Almeida A (2009) New chemical Fricke gel radiation dosimeter. J Radioanal Nucl Chem 280:259–364

    Article  CAS  Google Scholar 

  15. Soliman YS (2014) Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat Phys Chem 102:60–67

    Article  CAS  Google Scholar 

  16. Sun P, Fu YC, Hu J, Hao N, Huang W, Jiang B (2016) Development and dosimetric evaluation of radiochromic PCDA vesicle gel dosimeters. Radiat Meas 85:116–125

    Article  CAS  Google Scholar 

  17. El Gohary MI, Soliman YS, Amin EA, Abdel Gawad MH, Desouky OS (2016) Effect of perchloric acid on the performance of the Fricke xylenol gel dosimeter. Appl Radiat Isoto 113:66–69

    Article  Google Scholar 

  18. Davies JB, Baldock C (2010) Temperature dependence on the dose response of Fricke-gelatine-xylenol orange gel dosimeter. Radiat Phys Chem 79:660–662

    Article  CAS  Google Scholar 

  19. ISO/ASTM 51026 (2015) Practice for using the Fricke Dosimetry System. ASTM International standards on Dosimetry for Radiation Processing, ASTM International, West Conshohocken, PA, 2015

  20. Sadtler Research Laboratories Inc., Standard Spectra, #21078 K, 1966

  21. Bellamy LJ (1980) The infrared spectra of complex molecules, vol 2, 2nd edn. Chapman and Hall, New York

    Book  Google Scholar 

  22. Friedman M, Sigel CW (1966) A kinetic study of the ninhydrin reaction. Biochem 5:478–485

    Article  CAS  Google Scholar 

  23. Dietz F, Rommel-Möhle K, Schleitzer A, Tyutyulkov N (1939) On the chromophore of the ninhydrin-amino acid color reaction. Z Naturforsch 48(1133–1):137

    Google Scholar 

  24. Andrews HL, Murphy RE, Lebrun EJ (1957) Gel dosimeter for depth-dose measurements. Rev Sci Instrum 28:329–332. doi:10.1063/1.1715877

    Article  CAS  Google Scholar 

  25. Abdel-Fattah AA, Hegazy ESA, Ezz El-Din H (2002) Radiation-chemical formation of HCl in Poly(vinyl butyral) films containing chloral hydrate for use in radiation dosimetry. Int J Polym Mater 51:851–874

    Article  CAS  Google Scholar 

  26. Friedman M, Williams LD (1974) Stochiometry of formation of Ruhemann’s purple in the ninhydrin reaction. J Bioraganic Chemistry 3:267–280

    Article  CAS  Google Scholar 

  27. Sharp P, Miller A (2009) Guidelines for the calibration of routine dosimetry systems for use in radiation processing. National Physical Laboratory. NPL Rep, CIRM, p 29

    Google Scholar 

  28. ISO/ASTM 51707, Guide for estimation of measurement uncertainty in dosimetry for radiation Processing, ASTM International, West Conshohocken, PA, 2015

  29. Mehta K (2006) Radiation processing dosimetry: a practical manual. Radiat Phys Chem 76:1087

    Google Scholar 

  30. Hubbell JH, Seltzer SM (2004) Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients (version 1.4). [Online] Available: http://physics.nist.gov/xaamdi. National Institute of Standards and Technology, NIST, Gaithersburg, MD, USA. Originally published as NISTIR 5632, NIST. 1995. Gaithersburg, MD

  31. Mayneord W (1973) The significance of the rontgen. Acta Int Union Against Cancer 2:271

    Google Scholar 

  32. Khan FH (2010) Physics of Radiation Therapy, 4th ed. J. Pine (Philadelphia: Lippincott Williams & Wilkins)

  33. Pearce JAD, Crossley DC (2007) Gel Dosimetry for Direct Measurement of Dose Distribution: Progress Report. National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, NPL Rep. IR 1

  34. Papoutsaki MV, Maris TG, Pappas E, Papadakis AE, Damilakis J (2013) Dosimetric characteristics of a new polymer gel and their dependence on post-preparation and post-irradiation time: effect on X-ray beam profile measurements. Phys Med 29:453–460

    Article  Google Scholar 

  35. Chiang CM, Hsieh BT, Shieh JI, Cheng KY, Hsieh LL (2013) An approach in exploring the fundamental dosimetric characteristics for a long shelf life irradiated acrylamide-based gel. J Radioanal Nucl Chem 298:1435–1445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt for basic research in the field of radiation technology applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser S. Soliman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, Y.S., Alkhuraiji, T.S. Characterization of a new gel based on alanine–ninhydrin for possible use in radiation dosimetry. J Radioanal Nucl Chem 314, 241–250 (2017). https://doi.org/10.1007/s10967-017-5405-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5405-9

Keywords

Navigation