Skip to main content
Log in

A micro mixed micelle-mediated preconcentration procedure for spectrophotometric determination of uranium in real and synthetic samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A micro-cloud point extraction method was discussed for preconcentration and spectrophotometric quantification of U(VI). The method depends on complex formation between U(VI) and 2-(4-sulphophenyloazo)-1,8-dihydroxy-3,6-naphtalenedisulphonic acid (SPADNS) at pH 7.0 and subsequent extraction of the complex in a mixed surfactant medium (cethyltrimethyl ammonium bromide and Triton X-114). The separation was carried out in the presence of 1% Na2SO4 at room temperature. The calibration curve was linear up to 3000 µg L−1. The enrichment factor, detection limit and precision were 16.0, 1.05 µg L−1, and 2.3%, respectively. The method was employed for the determination of U(VI) in real samples with different matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for uranium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, 2013

  2. Manickam E, Sdraulig S, Tinker RA (2008) Method design and validation for the determination of uranium levels in human urine using high-resolution alpha spectrometry. J Environ Radioact 99(3):491–501

    Article  CAS  Google Scholar 

  3. Yousefi SR, Ahmadi SJ, Shemirani F, Jamali MR, Salavati-Niasari M (2009) Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta 80(1):212–217

    Article  CAS  Google Scholar 

  4. Jamali MR, Assadi Y, Shemirani F, Hosseini MR, Kozani RR, Masteri-Farahani M, Salavati-Niasari M (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579(1):68–73

    Article  CAS  Google Scholar 

  5. Benkhedda K, Epov VN, Evans RD (2005) Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry. Anal Bioanal Chem 381(8):1596–1603

    Article  CAS  Google Scholar 

  6. Aydin FA, Soylak M (2007) Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 72(1):187–192

    Article  CAS  Google Scholar 

  7. Misra NL, Dhara S, Singh Mudher KD (2006) Uranium determination in seawater by total reflection X-ray fluorescence spectrometry. Spectrochim Acta B 61(10–11):1166–1169

    Article  Google Scholar 

  8. Landsberger S, Kapsimalis R (2013) Comparison of neutron activation analysis techniques for the determination of uranium concentrations in geological and environmental materials. J Environ Radioact 117:41–44

    Article  CAS  Google Scholar 

  9. Welz B, Sperling M (1999) Atomic absorption spectrometry. Wiley-VCH, New York

    Google Scholar 

  10. Goltz DM, Gregoire DC, Byme JP, Chakrabarti CL (1995) Vaporization and atomization of uranium in a graphite tube electrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry. Spectrochim Acta B 50(8):803–814

    Article  Google Scholar 

  11. Niazi A, Khorshidi N, Ghaemmaghami P (2015) Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods. Spectrochim Acta A 135:69–75

    Article  CAS  Google Scholar 

  12. Oguma K, Suzuki T, Saito K (2011) Determination of uranium in seawater by flow-injection preconcentration on dodecylamidoxime-impregnated resin and spectrophotometric detection. Talanta 84(5):1209–1214

    Article  CAS  Google Scholar 

  13. Ghasemi JB, Zolfonoun E (2010) Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by α-benzoin oxime modified Amberlite XAD-2000 resin. Talanta 80(3):1191–1197

    Article  CAS  Google Scholar 

  14. Mortada WI, Moustafa AF, Ismail AM, Hassanien MM, Aboud AA (2015) Microwave assisted decoration of titanium oxide nanotubes with CuFe2O4 quantum dots for solid phase extraction of uranium. RSC Adv 5:62414–62423

    Article  CAS  Google Scholar 

  15. Hellé G, Marieta C, Cote G (2015) Liquid–liquid extraction of uranium(VI) with Aliquat® 336 from HCl media in microfluidic devices: combination of micro-unit operations and online ICP-MS determination. Talanta 139:123–131

    Article  Google Scholar 

  16. Reinoso-Maset E, Ly J (2016) Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model. J Environ Radioact 157:136–148

    Article  CAS  Google Scholar 

  17. Khalifa ME (1998) Selective separation of uranium using alizarin red S (ARS)-modified anion-exchange resin or by flotation of U-ARS chelate. Sep Sci Technol 33(14):2123–2141

    Article  CAS  Google Scholar 

  18. Fujiwara A, Kameo Y, Hoshi A, Haraga T, Nakashima M (2007) Application of extraction chromatography to the separation of thorium and uranium dissolved in a solution of high salt concentration. J Chromatogr A 1140(1–2):163–167

    Article  CAS  Google Scholar 

  19. Mortada WI, Kenawy IM, Hassanien MM (2015) A cloud point extraction procedure for gallium, indium and thallium determination in liquid crystal display and sediment samples. Anal Methods 7:2114–2120

    Article  CAS  Google Scholar 

  20. Hassanien MM, Mortada WI, Kenawy IM (2015) Selective separation of palladium from synthetic highly active liquid waste by cloud point extraction using benzil mono-(2-pyridyl)hydrazone and Triton X-114. J Radioanal Nucl Chem 303(1):261–269

    Article  CAS  Google Scholar 

  21. Mortada WI, Hassanien MM, Donia AF, Shokeir AA (2015) Application of cloud point extraction for cadmium in biological samples of occupationally exposed workers: relation between cadmium exposure and renal lesion. Biol Trace Elem Res 168(2):303–310

    Article  CAS  Google Scholar 

  22. Mortada WI, Hassanien MM, El-Asmy AA (2013) Speciation of platinum in blood plasma and urine by micelle-mediated extraction and graphite furnace atomic absorption spectrometry. J Trace Elem Med Biol 27(4):267–272

    Article  CAS  Google Scholar 

  23. Ghasemi E, Kaykhaii M (2015) Developing a new micro cloud point extraction method for simultaneous preconcentration and spectrophotometric determination of uranium and vanadium in brine. Anal Sci 31(5):407–411

    Article  CAS  Google Scholar 

  24. Ghasemi E, Kaykhaii M (2016) Application of a novel micro-cloud point extraction for preconcentration and spectrophotometric determination of azo dyes. J Braz Chem Soc. doi:10.5935/0103-5053.20160030

    Google Scholar 

  25. Mortada WI, Hassanien MM, El-Asmy AA (2014) Cloud point extraction of some precious metals using Triton X-114 and a thioamide derivative with a salting-out effect. Egypt J Basic Appl Sci 1(3–4):4184–4191

    Google Scholar 

  26. Rizk M, Zakhari NA, Toubar SS, El-Shabrawy Y (1995) Spectrophotometric determination of aluminum and copper ions using SPADNS. Mikrochim Acta 118(3):239–247

    Article  CAS  Google Scholar 

  27. Calvo M, Marina ML, Radriguez AR, Gonzalez V (1986) Spectrophotometric and potentiometric study of the complexes originated by the trisodium salt of 2-(p-sulfophenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid (SPADNS) and several metal ions. Microchem J 34(3):289–294

    Article  CAS  Google Scholar 

  28. Pouretedal HR, Keshavarz HM (2006) Determination of trace amounts of vanadium by kinetic-catalytic spectrophotometric methods. Chin J Chem 24(4):557–562

    Article  CAS  Google Scholar 

  29. Haj-Hussein AT, Al-Momani IF (1989) Indirect spectrophotometric determination of fluoride in water with zirconium-SPADNS by flow injection analysis. Anal Lett 22(6):1581–1599

    Article  CAS  Google Scholar 

  30. Fernández F, Marina ML, Rodríguez AR (1991) Study of SPADNS as mobile-phase complexing agent for metal ion separation in reversed-phase high-performance liquid chromatography. Microchem J 44(3):335–338

    Article  Google Scholar 

  31. Jeffery GH, Bassett J, Mendham J, Denney RC (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn. Longman Scientific and Technical, New York, p 474

    Google Scholar 

  32. Moberg L, Pettersson K, Gustavssonb I (1999) Determination of cadmium in fly ash and metal alloy reference materials by inductively coupled plasma mass spectrometry and chemometrics. J Anal At Spectrom 14:1055–1059

    Article  CAS  Google Scholar 

  33. Shemirania F, Baghdadia M, Ramezanib M (2005) Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta 65(4):882–887

    Article  Google Scholar 

  34. Nascentes CC, Arruda MA (2003) Cloud point formation based on mixed micelles in the presence of electrolytes for cobalt extraction and preconcentration. Talanta 61(6):759–768

    Article  CAS  Google Scholar 

  35. Sato N, Mori M, Itabashi H (2013) Cloud point extraction of Cu(II) using a mixture of triton X-100 and dithizone with a salting-out effect and its application to visual determination. Talanta 117:376–381

    Article  CAS  Google Scholar 

  36. Komaromy-Hiller G, Calkins N, Wandruszka R (1996) Changes in polarity and aggregation number upon clouding of a nonionic detergent: effect of ionic surfactants and sodium chloride. Langmuir 12(4):916–920

    Article  CAS  Google Scholar 

  37. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10(6):658–663

    Article  CAS  Google Scholar 

  38. Akl ZF (2016) Micelle-mediated preconcentration using cationic surfactants for the spectrophotometric determination of uranium in aqueous solutions. J Radioanal Nucl Chem 308:693–700

    Article  CAS  Google Scholar 

  39. Ghasemi JB, Hashemi B, Shamsipur M (2012) Simultaneous spectrophotometric determination of uranium and zirconium using cloud point extraction and multivariate methods. J Iran Chem Soc 9(3):257–262

    Article  CAS  Google Scholar 

  40. Ferreira HS, Bezerra MDA, Ferreira SLC (2006) A pre-concentration procedure using cloud point extraction for the determination of uranium in natural water. Microchim Acta 154(1):163–167

    Article  CAS  Google Scholar 

  41. Shemirani F, Kozani RR, Jamali MR, Assadi Y, Milani SMR (2005) Micelle-mediated extraction for direct spectrophotometric determination of trace uranium(VI) in water samples. Sep Sci Technol 40(12):2527–2537

    Article  CAS  Google Scholar 

  42. Madrakian T, Afkhami A, Mousavi A (2007) Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction. Talanta 71:610–614

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. I. Mortada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortada, W.I., Kenawy, I.M.M., El-Gamal, G.G. et al. A micro mixed micelle-mediated preconcentration procedure for spectrophotometric determination of uranium in real and synthetic samples. J Radioanal Nucl Chem 313, 69–77 (2017). https://doi.org/10.1007/s10967-017-5281-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5281-3

Keywords

Navigation